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ABSTRACT 

In this paper, we propose a neuro-fuzzy model for 
preoperative prediction of malignancy in ovarian 
tumours. The model is intended to form part of a 
reliable preoperative tool to discriminate between 
benign and malignant ovarian tumours to help clinicians 
decide the most appropriate form of treatment for 
patients. An aim of our work is to find a model that is 
understandable, practicable and capable of achieving 
accurate diagnosis. In this paper, we present our initial 
attempts to develop such a model using the Adaptive 
Network based Fuzzy Inference System (ANFIS). Our 
model predicts ovarian cancer malignancy using 
demographic, serum tumour marker and ultrasound-
derived criteria.  An evaluation of the classification 
performance of the model suggests that an accuracy of 
about 84% is obtainable with an area under the receiver 
operating characteristic curve of 0.85.  
 

Keywords: ovarian cancer, medical diagnosis, neural 
networks, neuro-fuzzy, partitioning, ROC analysis, 
malignancy, prediction. 

 INTRODUCTION  

Ovarian cancer is one of the most common cancers 
among women in Europe. In the UK alone, there are 
about 6,800 new cases of ovarian cancer each year, but 
only 25% of these are diagnosed at an early stage [4]. 
Early detection of malignancy is important for the 
survival of the patient, but because a large number of 
cases are only diagnosed at an advanced stage the rate 
of mortality for this type of cancer is high. 
 
The treatment and management of different types of 
ovarian tumours also differ significantly. For patients 
with a benign tumour, a conservative management or 
minimally invasive surgery will suffice whereas for 
those with suspected malignancy timely referral to a 
gynaecologic oncologist [11, 18] is necessary. Thus, a 
reliable preoperative test to discriminate between benign 
and malignant ovarian tumours would be of 
considerable help to clinicians [18] in deciding the most 
appropriate form of treatment for patients.  
 
Over the years, significant attempts have been made to 
perform preoperative detection of malignancy and this 
has led to the development and use of the Risk of 
Malignancy Index (RMI). The RMI combines values of 
the CA 125 with ultrasonographical parameters and the 
menopausal status of the patient [8] and provides better 
results than most other methods.  The RMI is widely 

used, but it has some limitations (e.g. when it is applied 
to borderline cases of ovarian tumours and to stage I 
invasive cancers) and there is a need to achieve a higher 
rate of performance than RMI can provide.  
 
Various statistical and machine learning techniques 
have been used with some success for preoperative 
prediction of ovarian tumour. These include multi-layer 
perceptrons, least squares support vector machines [11], 
combined genetic algorithm and fuzzy logic model [14], 
and Bayesian believe networks [2, 19]. However, some 
of these are seen as ‘black boxes’ and some are time 
consuming to design or simply not easy to understand. 
In this paper, we have used the neuro-fuzzy approach to 
exploit the benefits of both neural networks and fuzzy 
logic. Fuzzy logic enables the model to capture expert 
knowledge and neural networks make it possible to 
learn and to optimise results. A key feature of this 
approach is the ability to capture knowledge from data 
that is inherently imprecise and to maintain a high level 
of performance in the presence of uncertainty. This is 
important because medical tests and data are inherently 
imprecise because of individual differences, 
measurement errors and noise [13]. Another important 
advantage is the interpretability of the resulting model, 
which is important for widespread acceptance in ovarian 
cancer diagnosis. Thus, the combined use of fuzzy logic 
and neural networks provides an inference approach 
with learning capability and a reasoning model that is 
not only understandable but accurate. 
 
Our model is based on the Adaptive Network Fuzzy 
Inference System (ANFIS) which has been shown to 
provide a more accurate result compared to other 
methods [13]. ANFIS has been successfully used in 
modelling, control and in different areas of biomedicine, 
including breast cancer and diabetes [5]. 
 
The remainder of the paper is organized as follows. In 
the next section we explain the methodology used in the 
study. This includes a description of the ovarian cancer 
data base, a brief introduction to the Adaptive Network 
Fuzzy Inference System (ANFIS) which formed the 
basis for the diagnostic model we have developed. 
Thereafter, we discuss the implementation and then 
present the results of the study. Finally, we present the 
conclusions. 
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METHODOLOGY 
 
A. Ovarian cancer database  
 
The data used in this study was provided by the 
Katholieke Universiteit Leuven, University Hospital, 
Leuven, Belgium. The database includes the 
information for 525 patients who were referred for an 
ultrasonographic examination between 1994 and 1999. 
The classification output was binary: malignant (1) or 
benign (0) tumour, [11]. The database contains 
information about demographic, serum marker, colour 
Doppler imaging and morphological variables (see 
Table I). The results of histological examination were 
considered as the “gold standard” for discrimination of 
benign and malignant tumours. The database consists of 
26 variables, 6 of which are continuous variables: age, 
CA 125, pulsatility index, resistance index, peak 
systolic velocity and time-averaged mean velocity. The 
remaining variables are categorical (see Table I). 
Several studies have been carried out at Katholieke 
Universiteit Leuven using the data set [11]. 
Transvaginal ultrasound examination was performed on 

all patients. Morphological assessment of the tumour 
includes: presence of abdominal fluid, presence of 
papillary structures (more than 3mm), smoothness of 
internal wall, tumour on both pelvic sides. The presence 
of a symptom was assigned a value of 1; the absence of 
a symptom was assigned a value of 0. All tumours were 
examined by colour Doppler imaging (CDI), and a 
colour score was used for subjective semiquantitive 
assessment of the amount of blood flow. The outcome 
(pathology) was assigned a binary value, 0 for benign 
and 1 for malignant. The level of serum CA 125 tumour 
marker was measured. Serum CA 125 is a specific 
protein for which the elevated value has been shown to 
detect 80% of epithelial ovarian cancers. Demographic 
variables (age and menopausal status) were also 
considered and included. 
 
The initial database was pre-processed to remove cases 
with missing values and to logarithmically transform the 
variable CA 125. After removing records with missing 
values the database contains 425 cases (see Table II).  
 

 
TABLE I - Description of the initial data set (n = 525 cases) 

 
Groups Type Variable description (short name) 

NM Malignant NB Benign 

Age (Age) 141 56.8 ± 14.7 384 45.6 ±  15.2 Demographic 
Menopause (Meno) 141 65.2% 384 31.3% 

Moderate  blood flow (Col3) 141 34.0% 384 15.4% CDI – Colour score 
Strong blood flow (Col4) 141 44.0% 384 3.4% 

Serum marker Logarithm of CA 125 (Ln_CA125) 137 5.2 ± 1.9 295 3.0 ± 1.2 

Pulsatility index (PI) 129 0.96 ± 0.60 234 1.34 ± 0.94 
Resistance index (RI) 129 0.54 ± 0.17 234 0.64 ± 0.16 
Peak systolic velocity (PSV) 129 27.22 ± 16.54 234 19.85 ± 14.62 

CDI – blood flow indices 

Time-averaged mean velocity (TAMX) 129 17.41 ± 11.48 234 11.35 ± 9.69 

Ascites (Asc) 141 60.3% 384 13.3% 
Unilocular cyst (Un) 141 4.3% 384 46.1% 
Unilocular solid (UnSol) 141 16.3% 384 6.3% 
Multilocular cyst (Mul) 141 5.7% 384 28.6% 
Multilocular solid (MulSol) 141 36.2% 384 10.7% 

B-mode 
Ultrasonography 

Solid tumour (Sol) 141 37.6% 384 8.3% 

Bilateral mass (Bilat) 141 39.0% 384 13.3% 
Smooth wall (Smooth) 141 5.7% 384 56.8% 
Irregular wall (Irreg) 138 73.2% 373 33.8% 
Papillations (Pap) 141 53.9% 384 12.2% 
Septa > 3 mm (Sept) 141 31.2% 384 13.0% 

 

Acoustic shadows (Shadows) 141 5.7% 384 12.2% 

Anechoic cystic content (Lucent) 141 28.4% 384 43.5% 
Low level echogenicity (Low-level) 141 20.6% 384 11.7% 
Mixed echogenicity (Mixed) 141 13.5% 384 20.3% 
Ground glass cyst (G.Glass) 141 8.5% 384 19.8% 

Echogenicity 

Hemorrhagic cyst (Haem) 141 0.7% 384 3.6% 

Note: NM – number of malignant cases; NB – number of benign cases; for continuous variables the mean ± standard deviation were calculated; for 
binary variables, the occurrence (%) of symptoms were counted. 
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TABLE II – Distribution of patients in the pre-
processed data set 

Group Frequency Percentage (%) 

Malignant  
Benign 

134 
291 

31.5 
68.5 

Total 425 100.0 

 
 
B. Neuro-fuzzy modelling and the adaptive network 
fuzzy inference system. 
 
Fuzzy systems are characterised by fuzzy sets and fuzzy 
if-then rules of the form: 
 
 “IF x is A THEN y is B”, where A and B are fuzzy sets 
and x and y are members of the sets.    
 
The fuzzy sets A and B will each have a membership 
function associated with it which defines the 
distribution of the membership grades for the set. An 
example of the membership functions for a fuzzy set, 
Menopause Status, is depicted in Figure 1. In this case, 
the menopause status is determined by the age of the 
patient. 

 
Fig. 1. Membership functions for a fuzzy set 

“Menopause status”. 
 
In conventional fuzzy system, the fuzzy rules are 
obtained from human experts. The parameters of the 
fuzzy system (e.g. parameters of the membership 
functions and the rules) are then optimised either 
manually or by using a suitable optimisation technique 
[6]. This can be time consuming. The neuro-fuzzy 
approach used in our work is data-driven. In this case, 
the fuzzy rules are generated directly from the input-
output data sets. The neuro-fuzzy model learns the 
salient features in the data and automatically adjusts the 
system parameters in order to meet a specified error 
criterion.  
 

Our neuro-fuzzy model is based on the Adaptive 
Network based Fuzzy Inference System (ANFIS) [10]. 
The ANFIS embeds the fuzzy inference model within 
the framework of an adaptive network and this provides 
a systematic way to generate and optimize the 
parameters of the model using a suitable learning 
algorithm [10] in a way that is not directly dependent on 
expert knowledge as in conventional fuzzy system. 
 
To understand the link between ANFIS and 
conventional fuzzy system, consider a simple fuzzy 
inference system with two inputs, x and y, one output, f, 
and two fuzzy rules of the form: 
 
Rule1: IF  x is A1 and y is B1, THEN  f1=p1x+q1y+r1
Rule2: IF  x is  A2 and y is B2, THEN f2=p2x+q2y+r2
 
The fuzzy reasoning and processing required to generate 
the output, f,  from a given set of inputs x, y is depicted 
graphically in Fig 2(a).  The inputs, x and y, are first 
fuzzified to generate appropriate membership grades 
using the membership functions for the fuzzy sets, A 
and B. This essentially provides the values for the 
antecedent (the IF) part of the rule. The “firing 
strength”, i.e. the THEN part of the rule, is then 
obtained as the product of the membership grades in the 
premise part of the rule suitably weighted.  
 
The equivalent ANFIS architecture is depicted in Figure 
2(b). The ANFIS consists of adaptive nodes represented 
as squares and fixed nodes represented as circles. Using 
a learning rule the parameters in these nodes are 
adjusted to minimize a specified error measure.  
 
As can be seen, the ANFIS consists of five layers. The 
first layer is used to generate the membership grades for 
each set of input data vectors. For example, if the fuzzy 
sets A1 and A2 in Figure 2(a) each has a membership 
function which is bell shaped, the membership grades 
are obtained as: 
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where ai, bi, ci   is the parameter set which is used to 
alter the shape of the membership function.  
 
The second layer of ANFIS calculates the firing 
strengths of the rules as a product of the membership 
grades: 
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Fig. 2. (a)   A 2-rule fuzzy inference process, (b) Equivalent ANFIS architecture.
 

In layer 3, the normalized firing strengths of the rules 
(i.e. the ratio of the i-th rules firing strength to the sum 
of all rules' firing strengths) are calculated as:  
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Layer 4 yields the parameters of the consequent part of 
the rule. In this layer, every node  is characterized by a 
function of the form: 

i

ii fw ⋅ , where: iw - the output of layer 3 
 
 
The fifth layer calculates the overall output as the sum 
of the contributions of each rule, i.e. 

 
∑
∑

∑
⋅

=⋅=

i
i

i
ii

i
i

i w

fw
fw  

 
It is evident that the adaptive network is functionally 
equivalent to the fuzzy inference system in  Figure 2(a). 
 

 
In summary, the first and fourth layers in the ANFIS are 

learning rules are used to tune the model 

adaptive layers. The first layer contains three adjustable 
parameters [ai, bi, ci] which characterize the shape of the 
input membership functions. These parameters are 
associated with the IF part of the rule (the so-called 
premise parameters). The fourth layer also has three 
adjustable  parameters, [pi, qi, ri], the consequent 
parameters, which are associated with the THEN part of 
the rule.  
 

uitable S
parameters. A hybrid learning algorithm is used in the 
ANFIS. This combines the gradient descent and the 
least squares method for an effective search for the 
optimal parameters. 
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IMPLEMENTATION  

. Initialization of the input space  

uccessful design of the neuro-fuzzy model requires the 

 
 
A
 
S
division of the input into rule patches. This could be 
done using a variety of methods, e.g. grid, tree or scatter 
partitioning methods (see Fig. 3). 
 

(a) 
Grid tion 

(b) 
Tree tion 

(c) 
Scatte n

3. I ti
 

rid partitioning involves partitioning the input space 

er 

.  Diagnostic model 

embership functions building involves either the use 

NFIS requires the user to make a priori decisions 

e carried out the study using MATLAB version 7.0 

2

 the second method scatter partitioning was used to 

parti  parti r partitio
Fig. nput Space par tioning. 

G
(i.e. the number of rules which are used in the fuzzy 
inference system) into all the logical number of 
membership functions and this makes it easy to put all 
the parameters together. The drawback of this approach 
is that the number of rules grows rapidly as the input 
dimension increases. For m input variables and C 
partitioned fuzzy subset for each input, the number of 
possible rules is mC . As the number of variables 
increases, the numb of rules increases exponentially. 
It has also been found that this often leads to over 
fitting. Thus, in order to reduce the problems associated 
with grid-partitioning, the input space is divided into 
rule patches, e.g. scatter partitioning. This permits 
arbitrary positioning of the IF-parts of the fuzzy rules 
into sites in the input space. Scatter partitioning requires 
specification of a radius. This radius has a spherical 
neighbourhood in which the centre of each cluster will 
have an influential range. In MATLAB grid and scatter 
partition are implemented to generate the inference 
system. Grid partitioning is implemented as GENFIS1 
and scatter partitioning as GENFIS2.  
 
 
B
 
M
of an expert knowledge or a measure to obtain the 
relevant classes. The measure uses the significant 
attributes in the data to generate clusters. Extensive 
research has developed many variants of clustering 
techniques. For example, Mapping-Constrained 
Agglomerative (MCA) Algorithm [20] was used to 
partition breast cancer data set into a set of classes. 
However, different clusters produce different results and 
each has  its own advantages and disadvantages. A 
comparative study of clustering techniques has been 
especially difficult since each technique offers different 
results [9]. Subtractive clustering introduced by Chiu 
(1994) is a technique which extends the mountain 
clustering technique, where the potential is calculated 

for the data rather than the grid points. The advantage of 
this technique is that it produces a minimum number of 
fuzzy rules. This has been applied in ANFIS to generate 
initial parameters (GENFIS2). 
 
A
about the type and number of linguistic terms per 
variable and the number of rules. Here we analyse two 
common types of membership functions: Gaussian and 
generalised bell membership functions since they model 
uncertainty of real measurements very well. Secondly, 
ANFIS extracts rules only where the premises are 
connected through differentiable t-norms and generates 
as many rules as the product of the number of linguistic 
terms per variable. These two membership functions fall 
into this category.  
 
W
running on a Pentium 4 (2.8GHz, 512MB RAM) PC. 
We divided the data set into two subsets: 283 cases (two 
thirds) for raining and 142 cases (one third) for testing. 
The data set comprises different features (e.g. linguistic 
labels and semantic symptoms) and therefore was 
normalized to produce stable convergence. 
Normalisation enables the data to have an average of 
zero and a standard deviation of one (unit variance). We 
started by using candidate features consisting of 10 
variables which were already obtained by feature 
selection using LS-SVM with RBF kernels as described 
in [11]. The training set for the model, containing 283 
cases, was chosen randomly while maintaining the ratio 
λ ≈ 0.46 of malignant to benign (134 malignant cases: 

91 benign cases). The number of variables was 
changed from 2 to 4. The performance index, the Root 
Mean Square Error (RMSE), was measured at each step. 
Each combination was used to test predictive accuracy. 
Four variables were selected using grid partitioning of 
the input space to initialise the membership function 
parameters. In this set, all possible combinations of the 
input/output mapping were used. Two different 
membership functions (Gaussian and generalised bell) 
were tested during the run. We then obtained the system 
generated by the training data over 100 epochs and the 
accuracy with a threshold of 0.5. Four combinations 
from the subset of the 10 variables with the minimum 
RMSE were chosen, i.e. from all possible combinations 
of 4 from 10 4

10C = 210. The combination with the 
minimum RMSE was used as the variables set to predict 
the diagnosis.  
 
In
generate the initial membership function parameters and 
involves applying subtractive clustering algorithm (in 
MATLAB as GENFIS2). It generates a FIS structure 
from data using subtractive clustering. A Receiver 
Operating Characteristic (ROC) analysis was carried out 
to evaluate the performance of the neuro-fuzzy 
classification.  
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TABLE III - Selecting features for the model 

No. of 
features 

Variables RMSE Accuracy 
(%) 

(4)  Meno/Sol/Pap/Shad 2.47 × 10-8 75.45 

(3)  Meno/Sol/Pap  1.74 × 10-8 75.35  

(2)  Meno/Irreg 2.83 × 10-9 71.84 

 
 
RESULTS 
 
The initial concern was to identify the core attributes 
needed in order to enable the model to classify 
accurately. The selection of variables procedure was 
produced using the root mean square error, RMSE. The 
minimum RMSE for four variables is 2.47 × 10-8 and 
75.45% accuracy, when the combination, 
Meno/Sol/Pap/Shad variable is used (see Table III). The 
test for accuracy of diagnosis was compared using 
Gaussian and generalised bell membership functions. 
The number of membership function was varied 
between 2 and 3. 
 

 
Fig. 4. ROC curve for the model with a grid partitioning 

(r = 0.4). 

In order to draw conclusions from the model, a 
threshold mechanism that can produce a non-fuzzy 
(numerical crisp) output was used. Here we use a 
variable threshold ξ ranging from 0 to 1. Also since the 
training data was set to a target of 1 and 0, the algorithm 
compares each output y for example to 0.3, and equates 
each of the outputs to 1(malignant) if y is greater than 
0.3 and otherwise 0 (benign). The issue of threshold is 
important and must be explicit, particularly in relation 
to sensitivity and specificity. If a positive test has a high 
cut-off point it ultimately results in a low sensitivity and 
high specificity, and a low cut-off point results in a high 
sensitivity and low specificity. ROC analysis evaluates 
performance over the entire range of cut-off points. The 
ROC curve (see Figure 4) shows the relationship 
between false positive rate (x-axis) and true positive rate 

(y-axis) when changing the threshold point for decision-
making.  
The grid partition performance is lower than the scatter 
partitioning, because scatter partitioning covers only a 
subset of the whole input space which describes a 
region of possible occurrence of the input vectors. The 
model predictions show high specificity, but a relatively 
low sensitivity. Table IV shows the results for a test set 
(142 patients). The models used four input variables: 
menopausal status (Meno), presence of solid tumour 
(Sol), papillarities (Pap) and presence of acoustic 
shadows (Shad).  
 
Table IV - Summary of results based on four variables  

(cut-off = 0.3) 
 

Technique Acc (%) Se (%) Sp (%)
Gaussian 
MF 83.19 84.74 82.47 2 

MF Generalised 
bell MF 83.19 84.74 82.47 

Gaussian 
MF 84.65 87.41 83.37 

Grid 
Partitio-
ning 3 

MF Generalised 
bell MF 84.65 87.41 83.37 

Scatter  
Partitioning 

r = 0.2 
r = 0.4 
r = 0.6 
r = 0.8 

80.14 
80.94 
80.85 
80.94 

65.19 
69.19 
68.74 
69.19 

87.08 
86.39 
86.46 
86.39 

 
The result using grid partitioning gives an average 
accuracy of 83.19% for models with two membership 
functions, and 84.65% for models with three 
membership functions. The same values of ROC for 
different types of membership functions may be 
explained by the fact that only binary variables were 
included in the models so that parameters of  
membership functions with the shape do not affect 
performance of the model. However, the number of the 
membership functions has an influence on the model’s 
sensitivity and specificity. 
Scatter partitioning gives a high specificity, but low 
sensitivity (average Sp ≈ 86%, average Se ≈ 67%).  The 
average accuracy of the models based on scatter 
partitioning was lower than for grid partitioning-based 
models.  
To assess the impact of different membership functions 
on the operating characteristics for grid partitioning we 
used first four variables considered in [11] as the best: 
CA 125, Pap, Sol, and Col3. The results are presented in 
the Table V. The overall accuracy for this combination 
of parameters is lower, but not as much as the 
sensitivity. However, specificity for both sets of input 
variables was merely the same. 
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Table V - Summary of results based on four variables 
(CA 125, Pap, Sol, Col3) for cut-off = 0.3 

 
Technique Acc (%) Se (%) Sp (%)

Gaussian 
MF 74.93 55.33 84.02 2 

MF Generalised 
bell MF 74.58 55.11 83.61 

Gaussian 
MF 79.23 64.22 86.19 

Grid 
Partitio-
ning 3 

MF Generalised 
bell MF 76.34 54.89 86.29 

Scatter  
Partitioning 

r = 0.2 
r = 0.4 
r = 0.6 
r = 0.8 

77.66 
74.39 
69.21 
69.01 

64.44 
52.12 
57.17 
57.58 

83.79 
84.72 
74.79 
74.32 

 
A conclusive model should be reliable and reproducible. 
Thus the test was run for 15 times, each time randomly 
selecting the cases.  

 
Patient Result Diagram (PRD) 
 
There is a need to relate the result to the model. We 
have used a Patient Result Diagram to graphically show 
the result of the diagnosis on a set of patients. This 
diagram made of bars and no-bars, shows an evaluation 
of patients and the category which they belong after the 
prediction has been done by the classifier. The bars 
represent patients with malignant tumour; whereas no-
bars represent patients with benign tumour. Figure 7 
gives an illustration of the technique. The top diagram 
(in Figure 75) represents data obtained by “Gold 
standard”, while the bottom diagram shows results 
obtained from the model. This research uses a selected 
number of patients chosen randomly from the test data 
and predicts their diagnosis based on the trained model. 
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Fig. 5. Patient Result Diagram of prediction. 

 
 

 

CONCLUSIONS  

In this paper we have introduced the use of neuro-fuzzy 
methodology for preoperative ovarian tumour 
prediction. The main advantage of the model is its 
simplicity and good accuracy. The overall result is 
interesting for two reasons. firstly, the technique returns 
a relatively small number of false positive results. The 
variables selection process was performed by 
permutation-based approach, which selects the best 
combinations of features in terms of the room means 
square error. Another interesting point is that 
conventional markers such as age, serum CA 125 were 
not included in the final model. The variables selected 
include a combination of ultrasound characteristics of 
the tumour and menopausal state of patient. Future work 
will extract and examine the rules and fuzzy sets 
associated with the final model to gain a better 
understanding of the underlying workings of the model.  
More work is needed to study and evaluate the 
importance of certain rules and their contributions to 
model output.  An understanding of this should help to 
develop strategies for improving the performance of the 
model. 
 
The study has made use of common data obtained from 
ovarian cancer tests, although it is not possible to detect 
all malignant cases using the variables. In future, the 
inclusion of genomic data may improve the diagnostic 
accuracy and provide better a decision support for tasks 
such as treatment course management.  
This work has focused on preoperative diagnosis of 
ovarian cancer using neuro-fuzzy approach. Extensive 
comparison with other statistical and machine learning 
techniques would also need to be done, including a 
study of the impact of the missing values on the 
diagnostic accuracy. Extensive comparison with 
statistical and machine learning techniques such as 
MLP, LS-SVM will be carried out to provide a 
benchmark for ovarian tumour diagnostics. We will also 
investigate the use of neuro-fuzzy methodology in other 
cancer areas. This work will be integrated into a web-
based decision support system as part of BIOPATTERN 
Cancer special interest group (subproject SP09).  
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