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Abstract: Contrast-Enhanced magnetic resonance of the
breast (CE-MRI) is a useful adjunct to standard breast ex-
aminations. A typical CE-MRI examination of the breast
produces hundreds of images, that need to be analyzed
one by one. The complete analysis of a single dataset
requires a long time to complete and is an error-prone
process due to the errors caused by the fatigue and the
habituation of the radiologist. Computer Assisted Diag-
nosis (CAD) could help the clinicians in the analysis of
such big datasets. In this paper we present an experimen-
tation of simple classifiers for the classification of sig-
nal intensity curves extracted from CE-MRI images. We
used60 examinations with histological confirmed results
collected by the Diagnostic and Interventional Radiology
Department of the University of Pisa. From this data, we
extracted1800 patterns and used them to train and test
three different classifiers using a10-fold crossvalidation:
two threshold based ones and a multilayer feedforward
neural network. The result show that such algorithms are
able to reach accuracies greater than90%. Quite surpris-
ingly, we found that a very simple threshold-based classi-
fier reaches the best accuracy, even greater than those of
the neural network and of a simple ensemble built using
a voting scheme.

INTRODUCTION

Magnetic Resonance Imaging (MRI) of the breast is a
useful complementary technique to standard breast imag-
ing techniques, such as, for example, x-ray mammog-
raphy, when specific clinical indications exist. As dis-
cussed in Heywang-K̈obrunner et al [1], breast MRI is
often performed in order to eliminate the ambiguity from
uncertain mammographic findings. However, its role is
not restricted to that function: MRI is performed to iden-
tify the extent and the multifocality of detected lesions, to
evaluate the post-operative follow-up, to study the dense
breasts of young women. Even if it provides images
with a resolution lower than x-ray, the three-dimensional
dataset can give precious hints in establishing exactly the
location of the lesions. CE-MRI of the breast has been
a very controversial theme, but, recently, its importance
has been recognized: as stated in Takeda [2], the diag-
nosis of breast cancer has progressed owing much to the
improvement in the breast MRI examination.

However, plain MRI is not useful for detecting breast
cancers. In order to be effective, a contrast agent, typ-
ically a Gadolinium compound, must be injected in the
body of the patient. The basis of contrast-enhanced MRI
(CE-MRI) is the fact that tumors enhance and enhance
more than normal tissues. Since tumors need many blood
vessels to grow, the concentration of the contrast agent
at their location will be higher than in surrounding tis-

sues and they will consequently appear as brighter areas
in the images. Even if there is not a standard diagnostic
protocol, consult, for example, Kuhl and Schild [3], dy-
namic and morphological patterns related, respectively,
to the diffusion of the contrast agent and to the shape,
edges, or the internal pattern of the enhancing region, are
usually able to discriminate among different types of le-
sion. However, there is a considerable overlap between
dynamic and morphological patterns of benign and ma-
lignant lesions. A frequenty used scheme has been pro-
posed by Fischer et al. [4]. In this paper, however, we
will study dynamic features only.

A CE-MRI requires the acquisition of one series of
images before the injection of the contrast agent, called
pre-contrast series, and of several series of images, after
the injection, called post-contrast series. A CE-MRI ex-
aminations produces hundreds of images, which need to
be analyzed one by one. The role of a Computer-Assisted
Diagnosis (CAD) tool would be important since it could
provide a second-opinion to the radiologist, helping him
to reduce the number of errors caused by the fatigue and
habituation and providing him a second opinion to take
into account in difficult cases. Furthermore, computer
algorithms can be used to exploit and combine features,
which are not directly human readable, reaching higher
level of accuracy.

In this paper we present the results of a simple exper-
imentation of classifiers applied to the problem of learn-
ing and classification of dynamic patterns extracted from
CE-MRI examinations.

DIAGNOSTIC PROTOCOL AND DYNAMIC
CRITERIA

In order to establish the presence of lesions, either malig-
nant or benign, each image in the study must be analyzed
using two different sets of criteria: morphological and dy-
namic. The first step of the interpretation is the search for
enhancement in subtracted images, i.e. images obtained
by post-contrast images by subtracting their correspond-
ing pre-contrast images. Due to the overlap between be-
nign and malignant lesions in their dynamic behaviour
and their morphological appearance, an enhancing region
must be classified according to dynamic and morpholog-
ical criteria. Anyway, in most cases it is possible to make
a correct diagnosis using only dynamic criteria. Morpho-
logical criteria, described by Nunes [5], that are basically
the same as in other examinations, concern the shape of
the lesion and its borders. In CE-MRI the set of signs that
can be studied is enriched by the diffusion of the contrast
agent in the tissues.

In our work we considered only dynamic criteria, re-



Figure 2: Left: Curves extracted from our datasets. The picture contains 90 negative relative enhancement curves (green)
and 90 positive curves (red). Right: Mean relative enhancement curves computed on our dataset (1800 patterns, half
positive and half negative) with standard deviation. The red curve is the mean computed over malignant patterns, while
the green one is computed on negative patterns. The blue curve is the mean relative enhancement pattern computed over
the entire dataset.

lated to the diffusion of the contrast agent in the tissues.
There is not a common and accepted standard of diagnos-
tic critetia, but there is agreement on the fact that cancers
more often show early strong enhancement with rapid
washout, while benign lesions show a slowly rising and
persistent signal intensity curve. Szabó et al. [6].

The most important dynamic criterion is the relative-
enhancement, introduced in Kaiser & Zeitler [7]. The
relative-enhancement represents the increase in signal in-

Figure 1: Left: Abstract classification scheme. Type
I curves are usually found in benign lesions. Type III
found are considered a strong sign of malignancy. Type
II curves can be found in both types of lesions and do not
have a clear label.

tensity relative to the pre-contrast phase:

E%
k =

Ik(R)− I0(R)
I0(R)

· 100 k ∈ [1, nseries) (1)

whereIk is the examined image,k is the series index,
I0 is the corresponding pre-contrast image,R is a user-
selected region of interest, usually nine voxels wide. In
our experimentation,R correspond to a3×3 square win-
dow centered on the voxel selected by the user, the value
Ii(R) is simply the arithmetic mean of the intensities
of the voxels inR. The values computed according to
equation (1) are then interpolated to construct relative-
enhancement curves. The curves are classified in three
classes according to their behaviour:

Type I a kinetic behaviour with a persistent uptake is
considered a sign of benignity. Curves extracted
from benign lesions are often in this class;

Type II a kinetic behaviour with a clear plateau phase
can be found both in benign and in malignant fea-
tures. The classification of Type II curves is thus
unknown;

Type III a kinetic behaviour with a strong uptake fol-
lowed by a rapid washout is considered a sign of
malignancy. Type III are, in fact, often found in
malignant lesions.

The three prototypes that represent the three classes of
curves are shown in Fig. 1. The distinction among the
three types of curve is not always clear: there is a sig-
nificant overlap among curves extracted from benign and
malignant lesions. Furthermore, from the same lesion,
it is possible to extract type I or type III curves. Some
real curves, extracted from the examinations we have col-
lected, are shown in the left picture of Fig. 2. However,
the mean relative enhancement curves, computed over
positive and negative patterns, plotted in the right picture
of Fig. 2, confirm the ideal classification scheme of Fig. 1.



Figure 3: Left: Histogram of the values of the feature ’Values after 80 seconds’. Right: Histogram of the values of the
feature ’Washout Ratio’

The mean curve of positive patterns has a strong washout
phase, while the mean curve of negative is a steady in-
creasing curve.

The second dynamic criterion we used is the absolute
value of the signal intensity att second after the injection.
In our caset = 80s.

The third criterion is the initial slope, Szabó [6], de-
fined as:

Slopei =
Epeak

Tpeak
(2)

whereEpeak is the maximum relative enhancement and
Tpeak is the time elapsed tillEpeak is reached.

The fourth criterion is the washout-ratio, described in
Ikeda et al. [8]:

Wpeak−k =
Ipeak(R)− Ik(R)

Ipeak(R)
· 100 (3)

whereR is again a user-selected region of interest. In
our experimentation, wherek ∈ [0, 6), we computed and
usedWpeak−5, that is, we computed the washout-ratio
between the maximum signal intensity and the signal in-
tensity in the last post-contrast image, acquired at eight
minutes after the contrast injection.

MATERIAL AND METHODS

The dMRI examinations used in our study were collected
by the Diagnostic and Interventional Radiology Depart-
ment of the University of Pisa. In such department, the
dMRI is performed on women with uncertain mammo-
graphic findings, on young women and on women who
present an high risk for cancer. The datasets were ac-
quired on a General Electric 1.5T Signa Contour scanner
using 3D fast spoiled gradient echo sequences (FSPGR)
with 12.7 ms repetition time,2.5 echo time and 30◦ flip
angle. Each examination is composed by size series of
images: one pre-contrast series, i.e. a series depicting the
breast before injecting the agent, and five post-contrast
series, acquired at0, 2, 4, 6, and 8 minutes after the
injection of the contrast agent. The images in each se-
ries have256 × 256 voxels, each voxel being1.5mm
×1.5mm×3mm in dimension. There is no gap between
successive and adjacent images. The number of images

in the datasets depends on the dimension of the volume
that needs to be acquired. The gray level of each voxel
is stored using9 bits, providing a colour depth equal to
29 = 512.

Among the datasets that we have collected, we used
60 examinations with MR diagnosis, i.e. the diagnosis
made by the radiologist during reading, confirmed by a
histological examination.30 examinations contain ma-
lignant tumors, the remaining30 contain benign tumors.
For each examination, we extracted data from30 points
located inside the lesions. The dataset used in the experi-
mentations described in the next section is thus composed
by 30 · 30 = 900 benign patterns and30 · 30 = 900 ma-
lignant patterns, for a total number of patterns equal to
1800. Each pattern is labeled according to the label as-
signed by the histological examination to the lesion that it
is extracted from. In the following, we will refer to malig-
nant patterns as positive, and to benign ones as negative
(even if they have been extracted from a benign patholog-
ical lesion). We did not include patterns from normal tis-
sues and from blood vessels. Normal tissues can be easily
filtered out by applying a threshold, blood vessels have a

Figure 4: Histogram of the values of the feature ’Initial
Slope’



Figure 5: Mean ROC curves of the threshold-based classifier. Left: Classifier applied to the ‘Washout Ratio’ feature.
Right: Classifier applied to the ’Initial Slope’ feature.

chaotic dynamic behavior, with very irregular curves, and
can be easily detected.

The experimentation has been performed using ak-
crossvalidation procedure: the patterns are split intok
folders and each classifier is trainedk times, for each it-
eration,k− 1 folders are used as training set and1 folder
as test set. In our experiments we usedk = 10 folders,
each folder containing180 patterns from size examina-
tions, 3 · 30 = 90 extracted from three negative exam-
inations and3 · 30 = 90 extracted from three positive
examinations. Each examination is included in a single
folder and is used either as part of the training or part of
the test. The examinations included in each folder were
chosen randomly.

From the left picture of Fig. 2, the overlap between
malignant and benign patterns is manifest. The mean rel-
ative enhancement curves for positive and negative pat-
terns, shown in the right picture of Fig. 2, respect the
abstract classification scheme proposed in the left pic-
ture of the same figure. It is evident how negative rel-
ative enhancement patterns are basically steady, always
increasing curves, while positive ones are characterized
by a strong washout phase.

The feature ’Value after 80 seconds’, even if it is in-
cluded in the Fischer scheme for lesion classification,
does not provide a good classification of our dataset. The
histogram plotted in the left picture or Fig. 3 shows that
malignant and benign patterns are concentrated in the
same region. The criterion could be useful in the clas-
sification only when the feature has a value greater than
θ = 300, since no negative patterns assume values greater
thanθ. However, we decided to exclude such feature by
the current experimentation.

The feature ’Washout Ratio’ provides a good discrim-
ination between malignant and benign patterns. In fact,
negative patterns are characterized by a very low washout
value, while positive patterns have a greater washout ra-
tio. The mean value over positive patterns iswr+ =
10.26 with a standard deviationσwr+ = 8.29, while the

mean value over negative patterns iswr− = 0.18 with
a standard deviationσwr− = 0.73. The washout ratio
criterion, as it will be discussed later, is the criterion that
best classifies our dataset.

The feature ’Initial Slope’, whose histogram is plot-
ted in the right picture of Fig. 3, provides a good dis-
crimination, even if negative and positive patterns are not
clearly separated as in the washout-ratio. In this case, the
mean value over positive patterns isis+ = 25.05 with
a standard deviationσis+ = 14.73, while the mean and
the standard deviation over negative patterns are, respec-
tively, is− = 11.85 andσis− = 4.22.

In order to classify the relative enhancement curves,
trying to distinguish among the three different types, we
tested a multilayer feedforward neural network, trained
with the backpropagation algorithm. The network is a
three-layer network, with five input units, seven hidden
nodes and one output unit. The units have a log-sigmoid
transfer function. The network architecture was chosen
according to the results of previous experimentations and
several tests on the current dataset. The neural network
was trained for 10000 epochs. Before using the relative-
enhancement curves as training patterns, they need to be
normalized. We normalized them in the[0, 1] range; the
output of the network is in[0, 1]. It should be noted
that the normalization implies a great loss of information:
low enhancing curves and strong enhancing curves can be
mapped onto the same normalized curve, loosing all the
information about the absolute values of the relative en-
hancement. The backpropagation neural network is used
by other research groups to classify similar data, as, for
example, in Lucht et al. [9] and in Szabó et al. [10].

The features ’initial slope’ and ’washout ratio’ were
classified training a simple threshold-based classifier. Ba-
sically, for each iteration of the crossvalidation, the ac-
curacy of the classifier was computed for each iteration.
The threshold used in the classification of the test set was
the threshold allowing the classifier to reach the best ac-



Accuracy of \ on Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Mean

BP on R.E. 79.44 92.78 92.78 90.56 96.11 99.44 87.22 90.56 97.22 97.22 92.33
Threshold on IS 71.11 84.44 87.22 66.67 83.89 98.33 75.56 88.89 81.11 86.11 82.33

Threshold on WR 84.44 97.22 96.67 92.78 98.89 97.22 90.00 92.78 97.78 94.44 94.22
Ensemble (Voting) 80.0 95.00 95.56 91.11 98.89 99.44 88.33 92.78 97.22 93.89 93.22

Sensitivity of \ on Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Mean

BP on R.E. 68.89 97.78 90.00 96.67 100 100 78.89 94.44 95.56 98.89 92.11
Threshold on IS 58.89 95.56 95.56 67.78 82.22 100 67.78 94.44 63.33 85.56 81.11

Threshold on WR 77.78 97.78 96.67 94.44 100 97.78 84.44 95.56 97.78 90.00 93.22
Ensemble (Voting) 68.89 97.78 95.56 96.67 100 100 81.11 95.56 95.56 91.11 92.22

Specificity of\ on Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Mean

BP on R.E. 90.00 87.78 95.56 84.44 92.22 98.89 95.56 86.67 98.89 95.56 92.56
Threshold on IS 83.33 73.33 78.89 65.56 85.56 96.67 83.33 83.33 98.89 86.67 83.56

Threshold on WR 91.11 96.67 96.67 91.11 97.78 96.67 95.56 90.00 97.78 98.89 95.22
Ensemble (Voting) 91.11 92.22 95.56 85.56 97.78 98.89 95.56 90.00 98.89 96.67 94.22

Table 1: Accuracy (%) of each classifier on the ten iterations of the10-fold crossvalidation. First row: backpropagation
trained to classify normalized relative enhancement curves. Second row: threshold-based classifier trained on ‘Initial
Slope’ values. Third row: threshold-based classifier trained on ‘Washout-ratios’ values. For each row the last columns
contains the mean accuracy value over the10 iterations.
Second table: Sensitivity. Third table: Specificity.

Figure 6: Accuracy curves of the three classifiers and of the committee. From right to left: backpropagation (green),
threshold on ‘Initial Slope’ (red), threshold on ‘Washout Ratio’ (blue), committee (magenta). The dotted lines represent
the mean value of the classifier accuracy.

curacy on the training set. Such threshold was chosen by
computing ROC curves, as shown in Fig. 5. The thresh-

olds chosen by the two classifier at each iteration were
stable. In the ’Washout Ratios’ case the chosen threshold



was1.5 nine times and1.0 in only one iteration. In the
‘Initial Slope’ case the threshold was15 in seven itera-
tions and16 in only three of them. The little variance of
the two sets of thresholds can give precious hints in the
future construction of more complex classifiers.

Before presenting and discussing the results, some
specifications need to be made:

• in order to get reliable subtracted images, the post-
contrast and the pre-contrast images should be reg-
istered in order to compensate for deformations
caused by patient’s movement and by her breath-
ing and heartbeat. However, the curves used in the
current experimentation are extracted from original
images since clinicians prefer not to perform image
registration in order to avoid modifying the original
gray levels and loose information.

• The tested classifiers do not use architectural fea-
tures and any prior knowledge, like, for example,
lesion shape and location in previously acquired
mammographies. If a pattern extracted from a
malignant curve shows a clear and unambiguous
benign behaviour, according to the classification
scheme shown in Fig. 1, any classifier not using
architectural features would make a wrong diagno-
sis.

RESULTS

As previously said, the classifiers were trained and tested
using a10-fold crossvalidation scheme. The accuracies
of the three classifiers in the 10 iterations are shown in
Table 1. The simple threshold-based classifier, applied
to the washout ratios, is better than the more complex
backpropagation. It has not only a greater mean accu-
racy, but it outperforms the neural network in nine out of
ten iterations. Even if the feature it is applied to is one of
the most reliable signs of malignancy, the simplicity of
the ratio computation should have forced it to make more
mistakes. In fact, the washout ratio, as implemented in
the current experimentation, takes into account only the
difference between the maximum value of a relative en-
hancement curve and the last value of the same curve.
Curves like the false negative ones in the eigthth itera-
tion, plotted in Fig. 7, are incorrectly labeled as benign by
the WR classifier since they have a washout ratio equal to
zero: the difference between the maximum value and the
last one is small, but the washout phase is clear from the
intermediate values. A potential extension of the current
experimentation would be the combination of predictions
based on washout ratios computed at different time in-
stants. The lower accuracy of the backpropagation neu-
ral network could be caused by the uncertainty, that the
network cannot decrease, related to the curves present-
ing, after the normalization, a quasi-plateau phase. The
initial slope value does not provide, except for particu-
lar datasets, a reliable classification. That is an expected
result since it is strongly related to the ‘Values after 80
seconds’ feature, which has been found almost useless.

Once the three classifiers have been trained, they can
be joined in a single committee classifier. The simplest
combination scheme is the ‘voting’ one: a test pattern is
classified by the committee according to the majority of
the single classifiers the committee is composed of. How-
ever, the committee has accuracy, specificity, and sensi-
tivity lower than the WR-classifier. This fact suggests
that the backpropagation and the IS classifier agree quite
often in giving a wrong classification. In some cases, like
for example Test set 6, the combination of the prediction
made by the backpropagation and the IS classifier outper-
forms the WR classifier. Even if the results obtained by
the committee in this experimentation are not very good,
we consider the combination of simple classifiers the cor-
rect way to improve the diagnosis. In fact, one of the re-
quirements of clinicians is to be able to understand what
an algorithm is doing and the reasons of its final classifi-
cation. The use of very simple, human-readable features
allow them to understand every single step and to accept
or reject the result with confidence.

In Fig. 7, the patterns, that have been misclassified
by the committee, are plotted for each iteration. In some
cases the misclassifed patterns really indicate a different
type of lesion. For example, in iteration eight, the false
positive presents a washout phase.

Lastly, we need to specify that, in real settings, the
results of classifiers based on dynamic features might be
better. In fact, we performed a curve-based test: in the
practice, it is fundamental that the classifier highlight a
lesion. The experimentation should be conducted on a
per lesion basis.

CONCLUSIONS AND FUTURE WORK

In this paper we presented a simple experimentation of
three classifiers based on basic features, such as, for ex-
ample, the washout ratio. The classifiers were experi-
mented on1800 curves extracted from60 examinations
using a10-fold crossvalidation. Such experimentation
strategy clearly show that the classifiers are quite good
in classifying lesions with typical patterns, but fail, like
in Test Set 1, when lesions present atypical kinetic pat-
terns. Such observation confirms that, by themselves, the
kinetic patterns are not able to distinguish correctly be-
tween benign and malignant lesions. Anyway, the results
are quite good since almost all of the classifiers reached
a mean accuracy greater than90% using only kinetic fea-
tures.

There are several ways we plan our future work:

• the short-term goal is to enrich the set of kinetic
features used by the classifiers and try to improve
the classification of contrast-enhancement patterns.
Furthermore, other classifiers need to be tested:
in past experimentations we used other neural ar-
chitectures and linear discriminant analysis after a
principal component analysis. When choosing a
new classifier, one must take into account that, as
previously said, clinicians rightly pretend to under-
stand why a computer program made a decision.



Figure 7: Relative-enhancement curves of false positive (red curves) and false negative (green curves) patterns for each
iteration of the committee classifier.



• The long-term goal is to introduce morphologi-
cal analysis. The resolution of the examinations
(256 × 256 voxels for both breasts) in the current
dataset does not allow us to perform such type of
analysis. However, we are now collecting new data
which offer a resolution high enough for applying
morphological criteria.
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