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ABSTRACT 

In this paper multivariate analysis is adopted to evaluate 
the gait of subjects submitted to surgical reconstruction 
with complex  traumas of the foot (loss of skin, 
crushing) due to car crashes or accidents on the job.  

The analysis of gait parameters are a significant barrier 
to the clinical application of gait analysis. Principal 
component modeling of gait kinetic parameters reduces 
the data to measures of distance from normal and these 
measures are shown to be sensitive to change in gait 
pattern associated with traumas at the foot dorsum, or at 
the calcaneal area or at the forefoot area and their 
surgical reconstruction treatment.   

Principal component model is developed for twelve 
kinetic gait parameters of a group of 27 normal elderly 
subjects.  The loading vectors revealed the structure of 
the model. Scores and the residuals are used as distance 
measures about which confidence intervals are defined.  

Pathological gait data from 21 patients are characterized 
with respect to a control group. This method allows to 
find out a subset of parameters of the recorded data, 
important in sense of detecting deviation from gait 
considered to be normal. 

Mahalanobis distance is used to summarize the 
consistency of pathological sample with the gait 
presumed to be normal. Results are shown to agree with 
the clinical status. The differences in gait pattern 
obtained by the principal component models are clinical 
relevant.  

Keywords: Principal component analysis, Mahalanobis 
distance, Ground reaction forces. 

 

INTRODUCTION  

 
The  clinical evaluation of the gait is usually based on a 
visual inspection. This kind of analysis could be 
extremely subjective. The perception and/or the 
deviation by the “normal trend” of the movement result 
strictly connected with the experience and the 
knowledge of the clinician. For this purpose the 
evaluation process has to be reliable and reproducible 
[1],[2].  

Therefore instrumental methods for the analysis of the 
movement [3], [4], are associated to the clinical 
examination for the individualisation and/or 
quantification of the “disability signs” not perceived by 
visual inspection. This kind of analysis provides report 
not easily interpretable by the clinician. The knowledge 
in this domain is often badly structured and accessible 
by a strictly and specialised staff [5], [6]. Multivariate 
analysis allows to extract relevant information to 
evaluate human gait. 

This work characterizes the gait of pathological subjects 
quantitatively with respect to subjects whose gait is 
considered to be normal. 

Principal Component Analysis (PCA) [8], [9] is adopted 
to characterize the gait of subjects with complex 
traumas of the foot (loss of skin, crushing) due to car 
crashes or accidents on the job submitted to surgical 
reconstruction. 

The surgical treatment following this kind of traumas is 
focused on the morphological reconstruction and on the 
foot functional recovery. The reconstructive surgery 
main objective is to restore the anatomical shape, the 
weight bearing capability and the ambulation dynamics. 
The substitution of specific skin and muscles with 
coverage tissues often allows to rescue the injured foot 
and to recover ambulation [10]. After a rehabilitation 
program, patients recover their walking ability but some 
of them frequently claim gait disturbances (pain, fatigue 
and reduced functionality) over time. These problems 
are not easily justified by the clinical examination. 

This study is aimed at to characterise the functional 
ability of the subjects after reconstructive surgery by 
means of a 3D bilateral gait analysis. In particular 
Ground Reaction Forces (GRF) are recorded and 
analysed to reveal process hidden to the clinical eye. 

 

PATIENTS/MATERIALS AND METHODS 

 
The study population is composed by 21 patients, all 
belong to the second group of Hidalgo [11]. In fact they 
have  injuries limited to the tegument or complex 
traumas of the foot without significant fractures. 
According to the type of injury the subjects are 
classified in three groups:  

 



1) if the injury is localized under the foot from the 
plantar area under the metatarsal heads up to the fingers 
the subjects are classified to the forefoot group (5 
subjects);  

2) if the injury is localized under the foot in the region 
from the posterior part of the heel up to the plantar arch 
the subjects are classified to the rearfoot group (10 
subjects);  

3) if the injury is localized at the forefoot in the region 
of the dorsum the subjects are classified to the dorsum 
group (6 subjects).   

The control group consists of 27 subjects matched for 
age and sex.  

Each subject is asked to walk freely, wearing his/her 
shoes, in order to become familiar with the environment 
and to chose his/her preferred cadence. Shod condition 
is adopted to guarantee a familiar and comfortable 
situation to the subjects: in fact some of them cannot 
walk barefoot. These initial gait trials allow to the 
examiner to determine the starting position. No 
information about the platform position (BERTEC© 
force platforms, facq=500Hz) is given to the subject to 
avoid influence in the cadence. Data are collected for 
three trials in the moment each foot had its stance on the 
related platform.  

GRF are examined to study the foot behaviour during 
the phase of weight acceptance, rolling and raising of 
the toe.  The presence of some altered stance 
mechanisms are investigated [4], [12].  

The parameters of interest are extracted by GRF 
trajectories as described in [13]: the forces parameters 
(F1, F2,…. F6) and the corresponding time instants (T1, 
T2,…T6).  

To define the “normal gait model”, PCA is applied to 
the data of the control group subjects. Most data sets 
contain one or a few unusual observations that do not 
seem to belong to the pattern of variability produced by 
other observation. When an observation is different 
from the majority of data or is sufficiently unlikely 
under assumed probability model of the data, it is 
considered an outlier.  

Initially the set is cleared from outliers. In fact is 
important that all samples represent “not pathological” 
gait.  Multivariate outliers are found using “leave one 
out” Hotelling’s T2-Test [14]. This method consists on 
compute the distance between each point (xi) and the 
mean (x) of the training set in the original variable 
space, using (1):  
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where β the βeta-distribution, n is the number of 
samples and p is the dimension. Due to the fact that an 
outlier found with this control limit has influenced by 
the estimation of the mean (x) and the covariance matrix 
(Cx), these estimations and the Dis have to be 
recalculated after the elimination of the outlier (leave-
one-out) and again all Dis are compared to the new 
border. This is repeat until no outlier is found anymore. 

Principal component analysis as a classification and 
data structure detection method is than applied to the 
data from 2/3 of the whole control group without 
outliers. PCA is applied to identify the main structure of 
the data through describing the variation in the data [15-
18].  

Four steps are involved in the application of the PCA. 
The first step consists of finding the covariance matrix 
of the GRF parameters. A matrix is created from 
parameters  extracted by the trajectories. It consists of 
138 rows, each row representing a single trial of a 
subject, and 12 columns which contain the parameters. 
The purpose of applying PCA is to extract the 
maximum variance from the data by means of a few 
orthogonal components called principal components 
(PCs).  

 

The second step is to choose the number of PCs which 
should be retained for further analysis. The eigenvalues 
or factors loading of each PC indicate how many 
components are important in conveying most of the 
major information. Based on the Kaiser criteria [19], the 

Fig.1 Two variables (x1 and x2) which produce a 
model with 1 Principal Component (the bold line). 
The grey square represents an observation with a 
large T2 but a small Q whereas the black square 
represents and observation with a large Q but a 
small T2[15]. 
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eigenvalues that accounted for more than 1% of the 
variance could be applied for further data interpretation. 
However, in reality, the first few PCs accounted for 
most of the data variations suggested for analysis.  

As the PC model is to be used to asses future patients 
data, cross validation is chosen as it is suited to apply 
the model to future observations not included in the 
construction of the model. Cross validation measures 
the predictive power of the model using a summary of 
the predicted residual calculated by deleting and 
predicting each observation in turn from the model. The 
predicted residuals are compared as one adds PC until 
the overall prediction is no longer significantly 
improved by the addition of extra PC [20] [21]. So we 
use 1/3 of the whole control group to cross validate the 
model and the first eleven representative curves are 
retained as important factors.  

The third step is to choose and perform an appropriate 
type of rotation on the PCs to maximise the variation 
leading to more physiologically interpretable 
information. Varimax rotation is used to achieve the 
basic structure in a set of data by rotating the PC axes.  

The last step is to give a physical meaning to each PC. 
To get a first impression of the differences between the 
groups, PCs are calculated also for the pathologic 
groups. The interpretation of the first PCs is made by a 
simplification. Factors loading are marked with “+” or 
“-” if the value is greater than half of the maximum 
coefficient (again in absolute value) for the relevant 

principal component [7] (fig. 2). 

In order to assess the samples in the “normal gait” PC 
model, the difference distances T2 and Q [15] are 
calculated for pathologic and control group. T2 is the 
Mahalanobis distance between each observation and the 
centre of the hyper plane defined by the PC model. It 
demonstrates the  sample accordance with the model 
(fig.1): higher the T2 value, higher is the probability of 
the sample not belonging to the control population. Q is 
the residual, the perpendicular distance between the 
sample and the hyper-plane represented by the chosen 
PCs.  

To understand better how an how much changes in 
certain variables change the distance of the subject to 
the control group, we create twelve “test sample” which 
have mean values for all variables but one. This  
analysis allows to infer the parameters that cause T2 and 
Q values faraway from the reference (non pathological 
values).  

In order to obtain a numerical description that 
summarizes the consistency of the sample with the gait 
presumed to be normal and than considered as 
reference, the Mahalanobis distance between each 
sample and the training set in the T2-Q plane is used. 
This quantity is obtained for all subjects forming the 
normal model and the distribution can be used to derive 
a confidence interval (bootstrap [22]), to which the 
patient gait data are then compared.  

    F1 F2 F3 F4 F5 F6 T1 T2 T3 T4 T5 T6 
Control group              

  mean 11,41 8,03 11,85 0,43 -1,96 2,03 0,24 0,46 0,79 0,01 0,18 0,87 
  sd 0,85 0,99 0,77 0,28 0,36 0,35 0,03 0,05 0,01 0,01 0,03 0,01 
                

Forefoot group              
mean 10,92 8,56 11,05 0,45 -1,40 1,67 0,21 0,41 0,76 0,02 0,14 0,87 controlateral 

sd 0,88 0,54 0,78 0,23 0,46 0,36 0,06 0,06 0,03 0,01 0,04 0,02 
mean 10,51 8,40 10,56 0,46 -1,59 1,36 0,26 0,45 0,73 0,02 0,19 0,82 treated 

sd 0,32 0,40 0,87 0,18 0,39 0,40 0,06 0,03 0,04 0,01 0,05 0,05 
                

Rearfoot group              
mean 11,09 7,99 11,07 0,37 -1,58 1,61 0,23 0,44 0,77 0,02 0,17 0,86 controlateral 

sd 0,93 0,92 0,88 0,16 0,29 0,43 0,04 0,08 0,03 0,01 0,03 0,02 
mean 11,05 7,95 11,02 0,37 -1,62 1,46 0,25 0,46 0,73 0,02 0,19 0,83 treated 

sd 0,54 0,89 0,88 0,23 0,42 0,45 0,03 0,05 0,06 0,01 0,03 0,06 
                

Dorsum group              
mean 11,33 8,12 11,65 0,46 -1,85 1,90 0,22 0,45 0,78 0,02 0,16 0,87 controlateral 

sd 0,95 0,57 1,06 0,24 0,46 0,39 0,05 0,07 0,02 0,01 0,04 0,03 
mean 11,34 7,92 11,32 0,46 -1,76 1,74 0,24 0,45 0,78 0,02 0,16 0,87 treated 

sd 1,00 0,64 0,99 0,25 0,40 0,26 0,02 0,06 0,02 0,01 0,04 0,03 
 

Table.1 Mean values and related standard deviation of kinetics parameters. 



RESULTS  

 
The average and the standard deviation of F1, F2,…. F6, 
T1, T2,…T6 are presented in table 1. Our control group 
data are in good agreement with previous reported 
studies [13] [23] showing that our control group 
subjects’ gait performance is within the range of able-
bodied gait reported in literature.   

The PCs are calculated for 2/3 of the subjects from the 
control group cleared from the eight outliers. The 
number of PCs model is chosen through cross-
validation. 

PCs simplifications and factors loading analysis allow 
to point out the different structure and the meaning of 
pathological and not pathological PCs. 

In fact the sign (+/-) is important for the PC that is 
considered to see that the values of the variables are 
high respectively low together if they have the same 
sign or that the values contrast if they have different 
signs. The interpretation of the components is quite 
difficult because the structure is complicated for most of 
them. Nevertheless for some of the PCs illustrative 
relations to the trajectories can be drawn (fig.2). The 
first component of the “normal gait model”, for 
example, has a rather interesting structure: it contrasts 
the corresponding vertical and fore-after forces at 
loading response (F1 and F4) and at terminal stance (F3 
and F6) with the forces at mid stance (F2 and F5). I.e. 
when the values of F1, F4, F3 and F6 are high, the 
values of F2 and F5 are low and vice versa. Added to 
this T1 and T4 are contrasted.  

This structure differs to some extent very much from the 
pathological group. The PCs’ composition of the rear 
foot and the forefoot group is simpler; the first 
component represents the time instants T3 and T6. Only 

the dorsum group shows a strong similarity to the 
control group. 

T2 and Q are calculated for pathologic and control group 
and each sample are represented in T2-Q plane. The 
application of the model to the pathologic groups 
reveals that most of the rearfoot subjects are 
distinguished from “normal model” by their T2 value, 
while the Q values are similar to those of the control 
group. Many forefoot subjects differ in both T2 and Q 
values (fig. 3). The dorsum subjects have Q and T2 

values inside the “normal model” confidence interval. 
This is the group of which most samples are close to the 
control group (fig. 4). 

The Mahalanobis distance (MD) between each sample 
is calculated to have a numerical description that 
summarizes the consistency of each subject with the 
control group gait. No conclusion about its distribution 
can be drawn. Thus a non parametric method, the 
Bootstrap (with 2000 re-samples), is applied and the 
confidence interval for the control group are calculated: 
MD=5,07. This kind of distance is visualised in the T2-
Q plane with an ellipse (grey in the figures 3-4). 

The analysis of model structure allows to infer the 
parameters that cause T2 and Q values faraway from the 
values of the control group. Interestingly some 

 Control 
Group 

Dorsum 
Group 

Forefoot 
Group 

Rearfoot 
Group 

F1 + +     
F2 - -     
F3 + +     
F4 +       
F5 - -     
F6 + +     
T1 - - -   
T2         
T3     + + 
T4 + +     
T5   -     
T6     + + 

 
Fig.2 First simplified [3] principal components of 
control and pathological groups. 

Fig.3 Samples of the forefoot (a) and rearfoot (b) 
group in the T2-Q plane. The gray ellipse is the CI 
for the 95% of the control population. 

a) 

b) 



parameters have almost no influence, whereas high/low 
values in T2, T3 and T6 result in rather extreme values 
in T2 and Q (T2>20 and Q>17), and consequently in a 
position in the T2-Q plane far away from the samples of 
the control group.  

 

Indeed for the dorsum group T2, T3 and T6 are 
comparable to those obtained for the control group, 
while differences can be noticed for the other 
pathological group. 

 

DISCUSSION  

 
Principal analysis modeling is a promising technique for 
the successful reduction and analysis of gait kinematic 
parameters. It fulfils two objectives of gait analysis: 
detection and characterizations. The first represents the 
ability to classify a subject as different from what is 
often a “normal” population and the second represents 
the ability to characterize pathological gait with respect 
to a control group.  

Using PCA kinetic parameters are represent as a set of 
scores and residuals that are reduced to one statistical 
distance measures: Mahalanobis distance. Confidance 
interval about it derived from normal subjects provides 
limits to which patient gait is compared. This distance 
can be used as a statistical indicator to characterize the 
kinematic of different subjects in respect to their 
accordance with the model. The structure of the model 
provides the interpretation of the difference by 
identifying the portion of the stance responsible for the 
differences. In fact PCA allows also to find out which 
variables (T2, T3 and T6) associated to the recorded 
data are relevant in detecting deviation from the 
behavior considered to be normal.  

The work presented here demonstrates that the 
difference detected by principal component models are 
correlated with clinical status.  

Results of this study confirm that subjects operated at 
the dorsum have a gait rather similar to that considered 
to be normal. In fact the information are structured in 
such a manner to allow the correlate the movement 
analysis deviations with physiological causes. Injuries at 
the plantar area induce severe alterations revealed by 
this statistical approach but not recognized by subjective 
clinical evaluation. 
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