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ABSTRACT

Recent emerging aspects of clinical data analysis, espe-
cially of high dimensional data such as genomic studies
of microarrays, have begun to exploit interactive visuali-
sation tools for exploratory data mining. However, exist-
ing tools have not been designed to accommodateuncer-
tainty in the data measurements, even when estimates are
available. In this work we show how it is possible to incor-
porate knowledge of uncertainty in data measurements in in-
fluencing the data representation in two modern visuali-
sation tools: NeuroScale and the Generative Topographic
Mapping (GTM). The approaches are illustrated on selected
synthetic data problems and a microarray dataset of impor-
tance to pharmacogenetics research.

INTRODUCTION

Techniques for data visualization and exploration are be-
coming even more significant as our ability to produce high
dimensional biomedical data outstrips our ability to anal-
yse the results. As cited in a recent review on“Statistical
Challenges in Functional Genomics”, Sebastiani et. al. (1),
“The newly born functional genomic community is in great
need of tools for data analysis and visual display of the re-
sults”. Such tools in the clinical/biomedical domains have
tended to rely upon clustering and the dendrogram, Khan
et. al. (2), or projective methods such as Principal Compo-
nent Analysis, Raychaudhuri (3), and Sammon map, Apos-
tol and Szpankowski (4), and Independent Component Anal-
ysis, Draghici (5). More recent interesting methods for data
mining and knowledge discovery in databases have devel-
oped using minimal spanning trees for complex data visu-
alisation, Laskaris(6), capable of patient-specific and test-
specific analysis.

Tools for data exploration, especially through low di-
mensional data visualisation are especially important for
users such as research scientists or clinicians who are not
specialists in data modelling. Visualisation is an effec-
tive way for domain experts to detect trends, structures, clus-
ters, outliers, and other important data characteristics.In ad-
dition, it can be used to guide the data analysis process by
giving feedback on the results of models.

The use of automated tools for assisting the clinician
or user to help data-mine complex high-dimensional mea-
surements provided by biomedical systems such as mi-
croarrays, MEG and EEG, and lab-on-a-chip medical test-
ing is a major emerging aspect of clinical data analysis.
The difficulty stems from the very high dimensional na-
ture of data measurements, coupled with the nonlinearity,
lack of strong prior models, nonstationary nature of dynam-
ics in biology, and the often very noisy nature of the ob-

tained data.

Recent innovations to produce algorithms for the low-
dimensional representation of high-dimensional data have
tried to focus on retainingstructural integrityof the original
data. This implies that the visualisation space should
be topographic in some sense. Amongst very recent
developments to try and achieve such visualisations are
methods based around extending the Sammon Map to be
generalisable (ie NeuroScale, Lowe and Tipping (7), and
later similar approaches but dividing the space into local
regions (Local Linear Embeddings, Saul and Roweis (8)),
and more generative density modelling approaches such
as the Generative Topographic Map (GTM), Bishop et.al.
(9), and Stochastic Neighbor Embeddings, Hinton and
Roweis (10). These techniques have been extended to
provide more information about the embedding of data in
its high-dimensional space with magnification factors and
curvatures, hierarchical models that support drilling down
into data, Tǐno and Nabney (11), and visualisation of time
series dynamics, D’Alimonte et.al. (12).

Despite these developments, there are still practical is-
sues that arise when using visualisation tools on medical
data. One of the most important of these is theuncertainty
of measurements as a consequence of the noise processes in-
volved in the experimental design and techniques for gather-
ing data. For example, high-throughput measurement tech-
niques (such as those used for genomics and proteomics)
have many potential sources of error. Where these can be
quantified, acertaintyvalue can be attached to each mea-
surement. In many physiological measurements (such as
EEG and ECG) the signal-to-noise ratio varies considerably
(particularly in ambulatory recordings) and careful analy-
sis can estimate the quality of the signal and how it changes
over time. All analysis should take account of the data cer-
tainty so that less certain information has less influence on
the results.

Current visualisation methods have not been designed to
take into account the influence of measurement uncertainty
on the output visualisations. The primary purpose of this
paper is to show how some modern visualisation techniques
can be modified in a relatively simple way to account
for data certainty, both during the training (parameter
estimation) phase, and when visualising data. In Section
2, we introduce the models we will be considering and the
modifications needed to the training algorithms. Section 3
shows how well the techniques work on synthetic datasets,
while Section 4 describes a case study on genomic data of
pharmacogenetic relevance where quantitative measures of
uncertainty are provided by the measuring process. The final
section draws together the main conclusions from our work.



VISUALISATION MODELS AND UNCERTAINTY

We choose to show how a projective and a generative
model for data visualisation can be adapted such that their
visualisations are influenced by uncertainty in data. We
chooseNeuroScaleas the prototype projective model and
GTM as the generative model to be modified according to
a prescribed ‘certainty’Cn of data point~xn. Hereafter, we
assume that the certainty is a non-negative value falling in
the range [0, 1]. Often, it can be interpreted in a Bayesian
framework as our ‘degree of belief’ in the quality of the
measurement. However, it is not possible to give a uniform
definition valid across all applications (for example, when
the source of the certainty measure is outside the control of
the data analyst: see Section 5).

Neuroscale

In a Neuroscale topographic map the distribution and rel-
ative positions of the points in the data space are deter-
mined to reflect the relative dissimilarity between data mea-
surements in the high-dimensional space, and hence gener-
alises the established Sammon map.N measurement vec-
tors ~xi in R

p are transformed using a Radial Basis Func-
tion (RBF) network to a corresponding set of feature (vi-
sualisation) vectors~yi in R

q. Generally,q < p as dimen-
sion reduction is desired, and typicallyq = 2 for visualisa-
tion. The quality of the projection is measured by theSam-
mon STRESS metric(n.b. we are using a reduced form here,
neglecting a denominator often employed):

E =

N
∑

i

N
∑

j

(d∗ij − dij)
2, (1)

where

dij = ‖~yi − ~yj‖,

d∗ij = ‖~xi − ~xj‖,

(2)

represent the inter-point distances in projection space and
data space respectively. The aim of training process is to set
the parameters of the RBF to minimise the STRESS metric.

Rather than use a standard non-linear optimisation algo-
rithm to train the weights of the RBF network, Tipping and
Lowe (13) showed that there is a more efficient approach,
which they calledshadow targets. This algorithm makes use
of the general linear structure of the RBF model, so that hid-
den unit parameters are set using the input data only, and the
output layer weights are found with a model trust region ap-
proach, Nabney (14).

One approach to account for confidence values on mea-
surements is to modify equation (1) by adding a weight-
ing term to it.

E =

N
∑

i

N
∑

j

Kij(d
∗

ij − dij)
2, (3)

whereKij = min(Ci, Cj); Ci is a confidence value on data
point i.

More generally,Kij is a function of points~xi and
~xj that reflects the mutual uncertainty between the data
points. The role ofKij is to modify the influence that these
points contribute to the STRESS metric depending on our
relative confidence in these data points. Equation (3) can
be interpreted as saying that relative dissimilarities obtained
from data with low inter-point confidence are less important
in determining the mapping parameters. This will make the
visualisation plot less affected by outlying low-confidence
data.

SinceKij are pre-specified, the training algorithm for
NeuroScalecan be used with just the modified STRESS
function.

Note that this is a heuristic approach, since a fully
probabilistic formulation ofNeuroScaledoes not yet exist.
A partial address to this problem can be considered where
the relative dissimilarities in the STRESS measure are
derived from probabilistic distances between distributions
generating the measurements. However this will not be
considered in this paper.

GTM

The Generative Topographic Mapping (GTM), (9), was
introduced as a probabilistic alternative to the well-known
Self-Organizing Map (SOM) of Kohonen, Kohonen (15),
and overcomes most the significant limitations of the SOM.
They include the absence of a cost function, the lack of
a theoretical basis for choosing learning rate parameter
schedules and neighbourhood parameters, no general proof
of convergence, and the lack of a density model, (9). In
the GTM, the data are modelled by a constrained mixture of
Gaussians whose parameters can be optimised by using the
EM (expectation-maximization) algorithm.

The data~x = (x1, . . . , xd) lie in a d-dimensional space
and is modelled using aq-dimensional latent variable space
~z = (z1, . . . , zq). The two spaces are linked by a function
~y(~z; ~W ) which maps~z to~y(~z; ~W ) and is parameterised with
the matrix ~W . This maps the latent space to aq-dimensional
manifoldS embedded inRd. We shall use an RBF network
for this mapping, and~W represents the adjustable network
weights. For this model to be useful, we will usually need
q < d: in fact, the GTM is most practical whenq = 1 or 2.

By defining a probability densityp(~z) on the latent
space, we induce a densityp(~y| ~W ) in the data space. Since
q < d, this density will be zero away from the manifoldS.
This is an unrealistic constraint, since we cannot reasonably
expect the data to lieexactlyon aq-dimensional manifold.
Hence we add a noise model for~x. For real-valued data, it is
convenient and appropriate to use a spherical Gaussian with
varianceσ2, so that the data density conditional on the latent
variables is given by

p(~x|~z, ~W, σ) =
1

(2πσ2)d/2
exp

{

−
‖y(~z; ~W ) − ~x‖2

2σ2

}

.

(4)
The density in data space is then obtained by integrating out
the latent variables; however, for a general model~y(~z; ~W ),
this integral is analytically intractable. Let the densityp(~z)



be given by a sum of delta functions centred onnodes
~z1, . . . , ~zM in latent space:

p(~z) =
1

M

M
∑

j=1

δ(~z − ~zj). (5)

If the nodes are uniformly spread in latent space, this is an
approximation to a uniform distribution. The density in data
space becomes a simple sum ofM Gaussians:

p(~x| ~W, σ) =
1

M

M
∑

j=1

p(~x|~zj , ~W, σ). (6)

This is a mixture model where all the kernels have the same
mixing coefficient1/M and varianceσ2, and thejth centre
is given by~y(~zj ; ~W ). It is a constrainedmixture model
because the centres are not independent but are related by
the mapping~y.

The log likelihood for a dataset~xn, n = 1, . . . , N is
given by

L( ~W, σ) =

N
∑

n=1

ln







1

M

M
∑

j=1

p(~xn|~zj , ~W, σ)







. (7)

This opens the way to determining the parameters~W andσ
using maximum likelihood.

In our modified GTM model, the variance estimates
depend on the training data points~x, so the log likelihood
becomes:

L( ~W ) =

N
∑

n=1

ln







1

M

M
∑

j=1

p(~xn|~zj , ~W, σn(~x))







. (8)

In the EM algorithm, the basic formula for the E-step re-
mains the same as the standard GTM (though the computa-
tion of p(~xn|~zj , ~W (m)) differs in detail). In fact, the poste-
rior probability of the n–th data point being generated by the
j–th latent point is:

R
(m)
jn ( ~W (m)) = P (m)(~zj |~xn, ~W (m))

=
p(~xn|~zj , ~W (m))

∑M
j′=1 p(~xn|~zj′ , ~W (m))

. (9)

However, the M-step is different; from the complete-data
log likelihood:

〈Lcomp( ~W )〉 =
N

∑

n=1

M
∑

j=1

R
(m)
jn ( ~W (m)) ln{p(~xn|~zj , ~W )}.

(10)
Maximizing the expectation of the complete-data log likeli-
hood (10) with respect to~W gives:

N
∑

n=1

M
∑

j=1

R
(m)
jn ( ~W (m))

‖ ~W (m+1)φ(~zj) − ~xn‖

σ2
n

φT (~zj) = 0.

(11)
Solving the above equation, we get

Φ
T ~G(m)

Φ( ~W (m+1))T = Φ
T ~R(m) ~T , (12)

whereΦ is theM × K RBF design matrix with elements
Φji = φi(xj), ~T is theN × d data matrix,~R is anM × N

responsibility matrix with elementsRjn

σ2
n

, and~G is anM×M

diagonal matrix with elementsGjj =
∑N

n=1
Rjn(W )

σ2
n

.
The result in (12) remains the same as the standard

GTM. Since in our new modelσ2
n is dependent onn, it

cannot be eliminated from the equation as if it was a constant
as in the standard GTM model.

In the standard GTM, the E-step also estimatesσ, but
in our new model the variance estimates are derived from
confidence values. The simplest assumption that we can
make is that variances are the inverse of the confidences,
so thatσ2

n = 1
Cn

whereCn is a confidence value of the~xn

data point. With this definition,σ2
n ranges from 1 to∞. It

is helpful to introduce a constant,K, to control the scaling
of the variance:

σ2
n = Kσ∗2

n =
K

Cn
. (13)

Substituting (13) into (4) gives the following equation:

p(~x|~z, ~W, σ∗) =
1

(2πKσ∗2)d/2
exp{−

||y(~zi; ~W ) − ~x||2

2Kσ∗2
}.

(14)
The value of K can be estimated by using maximum
likelihood: maximizing (10) with respect to K gives the
following equation to solve:

N
∑

n=1

M
∑

j=1

R
(m)
jn ( ~Wm)(−

d

2K
+

1

2

‖ ~Wφ(~zj) − ~xn‖
2

K2σ∗2
n

) = 0

(15)
Therefore, the re-estimation equation for K becomes

K(m+1) =
1

Nd
N

∑

n=1

M
∑

j=1

R
(m)
jn ( ~W (m))

‖ ~W (m+1)φ(~zj) − ~xn‖
2

(σ
∗(m)
n )2

,

(16)

which is similar to the re-estimation ofσ in a standard
GTM.



SYNTHETIC DATASETS

In this section we discuss the application of the two modified
visualisation techniques to some synthetic data.

Neuroscale

The synthetic dataset is a 2-dimensional flat sheet in a 3-
dimensional space, with random noise disturbing the sheet
in the third dimension (see Figures 1, 2 and 3). The first
two dimensions (x andy axes) represent the data manifold
spread evenly in space and thez-axis is for the noise. There
are 121 data points in total.

A low level of noise variance is used for most of the
data, but some points are selected for larger additions of
noise variance; they may be considered asoutliers. The
number of outliers vary between 10 and 20 percent of the
dataset. The outlier’s varianceσ2 is varied between 1 to 10.
The confidence values are scaled so that the minimum is 0.
Two NeuroScale models, one based on the standard learning
function and the other exploiting the modified STRESS
definition (see Section 2.1) are then trained 10 times on the
data. Visualisation results are presented in Figures 2 and 3,
respectively.
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Figure 1: Synthetic data with 10% outliers andσ2 = 4.

Table 1 shows the result of the experiment where the
STRESS value does not include those of the outliers. It can
be observed that the structure of non-outliers has been better
preserved with the modified cost function. Table 1 confirms
this result in a quantitative way.

GTM

The synthetic data used for the GTM model consists of three
Gaussian mixture components in a four-dimensional space.
The centres of the components are aligned in a triangle and
the number of points in each is 100. When fitting a standard
GTM, the noise varianceσ2 is 0.0557. To explore the effect
of data confidences, the valueCn is set randomly in the
range[0, 1]. The modified GTM was trained both withK
fixed and learned from the data: the results are shown in
Figures 4, 5, and 6.
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Figure 2: Standard Neuroscale visualisation of synthetic
data in Figure 1. Note the distortion of the 2D grid and
position of the outlier points with high variance.
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Figure 3: Modified Neuroscale visualisation of synthetic
data in Figure 1. Note the positions of the high variance
outlier points.

Bigger circles identify larger uncertainty, i.e. smaller
confidence values and the smaller circles represent small
uncertainty, i.e. larger confidence values.

The dependence of the data visualisation on theK
parameter (see Equation 3) is demonstrated testing two
different values:for Figure 4 K=0.05, while for Figure 5
K=0.01. It can been see how in the latter case data are
more dispersed. The results show that when K=0.01, they
have a very clear separation. Comparing the results with
Figure 6 whereK is optimised by maximum likelihood
from equation(16). The estimatedK value from maximum
likelihood is 0.0167. Figures 5 and 6 give very similar
visualisations, which shows that the learning ofK from the
data is effective.
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Figure 4: Visualisation with modified GTM and fixedK =
0.05.
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Figure 5: Visualisation with modified GTM and fixedK =
0.01.
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Figure 6: Visualisation with modified GTM and estimated
K, final value0.0167.

Standard NSC Modified NSC
Outliers Stress value Stress value
% σ2 mean Variance mean Variance

1 0.41 0.01 0.37 0.018
2 0.59 0.08 0.49 0.016
3 0.84 0.22 0.48 0.021
4 0.87 0.07 0.53 0.029

10 5 1.04 0.11 0.7 0.08
6 0.87 0.06 0.8 0.149
7 1.08 0.13 0.7 0.026
8 1.35 0.55 0.81 0.148
9 1.4 0.5 0.73 0.042
10 1.87 0.43 1.11 0.097
1 0.65 0.05 0.38 0.014
2 1 0.24 0.63 0.062
3 1.47 0.22 0.79 0.035
4 1.39 0.39 0.94 0.159

20 5 1.39 0.41 0.93 0.159
6 1.7 0.37 0.97 0.199
7 1.69 0.38 1.02 0.27
8 1.84 0.53 1.1 0.169
9 3.02 2.17 1.17 0.288
10 3.02 2.17 1.42 0.191

Table 1: Means and variances of calculated STRESS
without including outliers.



APPLICATION TO GENOMIC DATA

Dataset

S. coelicoloris a complex mycelial Gram-positive bacterium
which undergoes developmental changes leading ultimately
to sporulation and production of antibiotics and other sec-
ondary metabolites. The 7,825 predicted genes in the lin-
ear S. coelicolorchromosome include more than 20 gene
clusters coding for known or predicted secondary metabo-
lites. The genome also contains an unusually large propor-
tion of regulatory genes, Bentley et.al. (16).

The S. coelicolordataset1 consists of expression data
from samples of surface-grown cultures taken at 16, 18, 20,
21, 22, 23, 24, 25, 39 and 67 hours after the inoculation
of the growth medium. Two independent sets of cultures
were processed and each Cy3-labelled cDNA sample was
hybridized against Cy5-labelledS. coelicolorgenomic DNA
(gDNA) as the common reference. The signal in the gDNA
channel follows a different distribution from the cDNA
channel since the number of copies of the gene in the
genome is fixed while the number of RNA copies can vary
widely. There were many probes yielding a significant
gDNA signal and very little signal in the cDNA channel,
resulting in a long (left-hand) tail in the distribution of ratios.
Using gDNA as a reference has the advantage of excluding
false negatives due to spotting failures and allows results
from different experiments to be directly compared.

The preprocessing of the microarray data consisted of:
i) correcting the data for spatial effects, Colantuoni et.al.
(17), ii) taking the log-ratio of the signal and the refer-
ence measurements; iii) applying the quantile method, Bol-
stad et.al (18), for across-condition normalization (correc-
tion implemented using the SMIDA package for R, Wit and
McClure(19),; iv) taking the mean of the replicates; v) ap-
plying a variance filtering and a low-value filtering to re-
move genes that are not significantly expressed; and finally
vi) normalizing each pattern of gene expression by sub-
tracting the values at the first time step. The last proce-
dure has been applied in order to investigate the gene ex-
pression patterns factoring out the absolute expression level.

In addition, Bayesian techniques were used to anal-
yse the ‘spots’ and provide confidence values for each mea-
surement using the BlueFuse tool2.

Many of the genes are not significantly expressed in this
experiment. We have visualised the 2,489 most expressed
genes filtered from the entire dataset. 1,000 randomly
selected genes were used to train the models.

To make a comparison, Figures 7 and 8 illustrate the
results from both Neuroscale models.

The results using the modified cost function show that
the low confidence value genes are spread away from the
centre more than the original Neuroscale model. This is
because the new model does not take as much account of
the low confidence genes in constructing the visualisation
space.

1The microarrays used in this study, and associated protocolsare
described athttp://www.surrey.ac.uk/SBMS/Fgenomics/.

2Seehttp://www.cambridgebluegnome.com/technology/
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Figure 7: Visualisation of the microarray dataset using
modified NeuroScale.
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Figure 8: Visualisation of the microarray dataset using
standard NeuroScale.



It can also be sen that the neighbourhood relationships
between the high and low confidence genes has altered in
local regions. This is a crucial point if the relative positions
of the visualisation points are going to be used for data
mining and inferring relationships amongst genes.

To complete the comparison, Figures 9 and 10 show
the use of modified and standard GTM (together with
magnification factors). These show a clearer distinction
between outliers and confident data points in the modified
algorithm. For example, a larger part of the plot in Figure 9
is given over to the bulk of the data, and the regions of high
magnification (which are for outliers) contain more points.
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Figure 9: Visualisation of the microarray dataset using
modified GTM and estimatingK.
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Figure 10: Visualisation the microarray dataset using stan-
dard GTM.

CONCLUSIONS

We have proposed a simple approach for incorporating un-
certainty of data values into the training of two leading-
edge visualisation algorithms for the purposes of data min-
ing. The approach does not add significantly to the com-
putational cost of training and shows benefits in visualisa-
tion in allowing the user to view more clearly the more cer-
tain data points. These benefits have been shown on syn-
thetic data and a real biological application.

Without the corrections demonstrated in this new visual-
isation approach, where data integrity is included as part of
the analysis process, it would be possible for some very un-
certain genes to appear alongside very certain genes in an
unmodified visualisation map. This would have the po-
tential for falsely leading a biologist using these visuali-
sation tools for data mining to a wrong conclusion (such
that some genes may apparently relate to the same process
- falsely - since their expression profiles are mapped to sim-
ilar regions). However, by allowing the measurement un-
certainty to influence the visualisation maps, the data min-
ing can proceed with a higher degree of belief in the tools.

Finally, the present study addressed the problem of
data certainty on the basis of a currently available set of
microarray data. It is however stressed that the issue of
data certainty is not limited to gene expression data or
data visualisation tools. Instead, this is a general aspect
involving any biomedical measurements and experiments,
and the subsequent development of models for diagnosis
and prognosis. A deeper consideration, understanding and
modelling of these aspects is one of key task of our future
work.
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