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ABSTRACT 

Linear and non-linear flexible regression analysis 
techniques, such as those based on splines and feed 
forward artificial neural networks (FFANN), have been 
proposed for the statistical analysis of censored survival 
time data, to account for the presence of non linear 
effects of predictors. Among survival functions, the 
hazard has a biological interest for the study of the 
disease dynamics, moreover it allows for the estimation 
of cumulative incidence functions for predicting 
outcome probabilities over follow-up. Therefore, 
specific error functions and data representation have 
been introduced for FFANN extensions of generalized 
linear models, in the perspective of modelling the 
hazard function of censored survival data. These 
techniques can be applied to account for the prognostic 
contribution of new biomarkers in addition to the 
traditional ones. 
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1. INTRODUCTION 

In biomedicine, modelling the time to occurrence of a 
specific event (failure time) is relevant to build decision 
support systems for the prediction of patients outcome 
with the aim of treatment planning. As an example, in 
clinical oncology, the study of prognostic factors 
deserves a growing interest to identify groups of 
patients with different risk of unfavourable events 
(death, distant metastases, local recurrences, etc.). Due 
to the growing number of putative prognostic factors to 
be investigated and to the presence of possibly complex 
prognostic relationships (non linear and non additive 
effects), feed forward artificial neural networks 
(FFANN) have been advocated for outcome analysis in 
oncology, Baxt (2). In such a context, multilayer 
perceptrons (MLP) and radial basis functions (RBF) 
networks are flexible alternative to traditional statistical 
tools. The benefits of the integration of FFANN with 
traditional methods for outcome prediction are still to be 
exploited; however, some reviews, Ripley and Ripley 
(25), Schwarzer et al. (26), Lisboa (20), have pointed 
out advantages and possible limitations caused by the 
adoption of heuristic approaches, without a full account 
of the specific features of censored failure time data. 
Papers merging survival analysis theory with artificial 
neural networks methodology in a discrete multiple 
classification framework have been firstly published by 

Liestol et al. (19), whereas a FFANN extension of the 
Cox’s model has been proposed by Faraggi and Simon 
(15) and applied by Mariani et al. (22) after some 
modifications. 
Among the different survival distributions, the hazard 
function (i.e. the instantaneous relative failure rate) has 
a key role in investigating the disease dynamics. 
Estimation of the hazard as a conditional function of 
time and covariates is a difficult problem, possibly 
characterized by non-monotonic behaviours and high 
order interactions between time and covariates; for this 
problem, FFANNs could provide substantial advantages 
with respect to linear methodologies. Starting from the 
relationships between generalized linear models (GLM) 
with Poisson or binomial errors and piecewise 
parametric or grouped time models, respectively, see 
Aitkin et al., (1), Efron, (13), their extension with MLPs 
and RBFs has been recently proposed for flexible 
modelling of the hazard function, allowing for non-
linear and non-proportional effects of covariates, 
Biganzoli et al., (3), (4); Boracchi and Biganzoli, (11). 
The aim of this paper is to present a general framework 
to define FFANN models on survival data, based on the 
relationship between GLM and piecewise parametric 
and grouped time models. To this aim the peculiar 
features of survival data are presented and the extension 
of GLM with MLPs and RBFs for survival data 
processing is subsequently illustrated. An application 
example is discussed and final considerations are 
provided. To ensure conformity and uniformity of 
appearance it is essential that these instructions are 
followed. Sample pages are enclosed with these notes to 
show you how the finished paper should look. 

2. FAILURE TIME DATA 

Let Z the random variable (r.v.) time elapsed by the 
beginning of the observation (e.g. date of the surgical 
intervention) to the appearance of a specific event (e.g. 
death or relapse of the disease). The followings 
functions of Z can be defined 

• survival 
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where ( )uf  is the probability density function. 
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A feature of failure time (survival) data is the possible 
incomplete observation. The time of the considered 
event may be unknown for the (i=1,2,…,N) 
experimental unit. This situation is known as 
censorship, and it may happen because of time limits in 
follow-up or other possible restrictions that depend from 
the nature of the study. Different types of censorship are 
possible and they have to be considered in appropriate 
way in the statistic models, Klein and Moeschberger, 
(16). In the present note it will only be considered the 
right censoring which verifies if the event is not 
observed before the term of the study or of a 
competitive event that causes the interruption of the 
individual sequence of visits (follow-up). For the ith 
subject, who will be characterized by the vector of 
covariates ix , the existence of a time of event ( iZ ) and 

one of censors ( iC ) are assumed; then the time 
observed ti is the realization of the r.v. 

iT =min( iZ , iC ). Right censored data are represented 

by a couple of r.v. ( iT , iδ ); where iδ  has actual value 

id =1 if the event is observed ( iT = iZ ) and id =0 if 

( iT = iC ). 
The general expression of the likelihood function for 
survival data in presence of right censoring, 
conditionally to ix  is given by 
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3. PARTITION ANG ROUPING OF FAILURE 
TIMES 

Given the continuous random variable T, piecewise 
models derive from the partition of the time axis into 
l=1,2,…,L disjoint intervals lA =( ll ττ ,1− ]; with 0τ =0. 
For the ith subject and the lth interval, the density 
probability functions ( )il xtf , , the survival function 
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are defined. Since the density functions are allowed to 
change in the different intervals, the piecewise survival 
function on l intervals is 
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τ  is the conditional probability of 

surviving till the time ντ ,given no event at time 1−ντ . 
For simplicity in the (1) and in the following 
calculations concerning products on the intervals it is 
assumed that the quantity [·] is equal to 1 for l < 2. 
Discrete time models are obtained by grouping the 
observed times on a point of each interval, for example 

lτ . In this context the 
i) survival function 
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where ( )ixfν
~  is the event probability in the ν th 

interval 
ii) conditional event probability (discrete 

hazard) 
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It follows that 
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The general expression of the likelihood function for the 
piecewise model for continuous time data with right 
censorship is given by 
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where il  is the last interval in which the ith subject is 
observed. For grouped data, the equations (2) and (3) 
allow to express the likelihood function as 
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3.1 Piecewises and Grouped Series Parametric 
Models 

Piecewise and grouped times parametric models provide 
a flexible alternative to the traditional ones, Aitkin et al. 
(1). Concerning the continuous time model if ( )il xth ,  
is assumed constant in each interval l, then Z will follow 
the exponential distribution with parameter ( )il xh . 
According to the (1), the piecewise exponential model 
will have 
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Starting from (4), after defining the: 
i) indicator variable lid  which is equal to 1 if, for 

the ith subject, the event of interest occurs in the 
interval Al; or 0 otherwise and 

ii) the risk exposure time 
( ) ( )[ ]11 ,min −− −⋅>= lliliil ttIU τττ , the 



conditional likelihood function can be expressed 
as 
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where ililil Ud=γ  the (6) is proportional to the 

likelihood of ilN ⋅  Poisson random variables, with 
proportionality constant 
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If the subjects can be grouped into K cells having equal 
covariate vectors x, a further version of the (6) is given 
by 
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where klklkl Ud=γ  (empirical rates), 
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ki ilkl dd  and ∑∈
=

ki ilkl UU . The (7) is 

proportional to the likelihood of K·L Poisson r.v., with 
proportionality constant 
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Concerning grouped data, the conditional likelihood 
function can be obtained from the (5) as 
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this latter results from the product of Bernoulli 
likelihoods, one for each ith individual i in the lth 
interval in which he/she is observed. Grouping over K 
cells, the likelihood 
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is obtained, with klklkl ndp =  (empirical risks), dkl 
and nkl are the number of events and observed subjects 
in the kth cell, respectively. The equation (9) is 
proportional to the likelihood of K·L independent 
binomial distributions, with proportionality constant 
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The piecewise exponential and grouped time models, 
considering a single event of interest, can be 
implemented on the basis of the above likelihood 
functions. 

4. COMPETING RISKS 

Quite often the clinical course of a disease is 
characterized by different possible events that represent 
the “failure causes” of the therapeutic intervention. In 
oncology, typically local-regional relapses, distant 
metastases, new primary tumours or death, may occur. 
From a statistical point of view, model suited to assess 
the dependence of the risk of each event (cause specific 
hazard, CSH) from the measured covariates are 
necessary, Marubini and Valsecchi (23). 

Flexible linear approaches based on spline functions has 
been proposed for competing risks estimation, through 
the extension of generalized linear models with Poisson 
error, Boracchi et al., (10). However, when the a priori 
knowledge is limited, linear models may be more 
difficult to implement, being at risk of a possible 
overparameterisation. As previously mentioned, an 
alternative is represented by artificial neural networks 
(ANNs) models, which implicitly account for non-linear 
and non-additives effects of covariates, Biganzoli et al., 
(3). 
In the presence of R different types of events, data may 
be represented by the random variables (T,δ,δρ), where 
ρ has observed values r=1,…,R and T=min(C,Z1,…,ZR). 
Considering only the case that T is continuous, the CSH 
functions are the instant hazard rate for the rth event, in 
the presence of the other failure causes, given the 
absence of events before t; 
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The survival function can be expressed as a function of 
the CSHs 
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The (11) holds without any assumption about the 
independence of the risks. From the (10) the cause 
specific survival is defined as 
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Concerning the piecewise exponential model for 
competing risks, see Larson (18), and Kramar et al., 
(17), the CSH functions are assumed constant in each 
interval: ( )ixlrh ,, . 

Introducing the indicator variable ilrd , equal to 1 if the 
ith patient, in the lth time interval, had the rth event and 
0 otherwise, from previous relationships the likelihood 
function for competing risks is 
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where klklrklr Ud=γ . The (12) is therefore an 
extension of the (7) to the case of competing risks, 
assuming klrγ  as Poisson random variable. 
Concerning grouped time models, defining 
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basis of (equal) vectors kx , if a R+1 additional ”at risk” 



indicator dil(R+1) is introduced, equal to 1 in the interval 

lA  in which the subjects is observed without failure, 
and equal to 0 otherwise, 
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The (13) is proportional to the likelihood of K·L 
independent multinomial distributions, where 
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 is the proportionality constant. 

Under the constraint 
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~

+  represent the conditional 
probability of being censored in the lth time interval. 

5. GLMS AND FFANNS 

A general framework for the development of FFANNs 
for survival data is that of the GLMs, McCullagh and 
Nelder (24). For such models, it is assumed that each 
component of the r.v. Y has a distribution ( )φθ ,;yf  
in the exponential family, whose log-likelihood function 
is given by 
( ) ( )[ ] ( )[ ] ( ) ( )φφθθφθφθ ,,;log;, ycabyyfyl +−==

 
If φ  is known, ( )φθ ,;yf  is an exponential family 
model with the canonical parameter θ . It can be shown 
that ( ) ( )θµ 'bYE ==  and ( ) ( ) ( )φθ abYVar "= . 

Typically, ( ) wa φφ = , where φ  is a constant 
dispersion parameter and w  is a prior weight that 
varies from observation to observation. In a GLM, µ  is 
related to the systematic part of the model η  

(predictor) by the link function ( ) ηµ =g . The 

predictor η  has linear additive form xTββη += 0 , 

with 0β  intercept and β  the vector of regression 
coefficients. FFANNs can be considered as GLMs with 
a non-linear predictor, Biganzoli et al., (4), as a multi-
layer perceptron (MLP) 
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or a RBF network 
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with h=1,…,H hidden units, hα , hϕ  activation 

functions and hc the centre of the hth radial basis, 

Bishop (9). Expressions (15) and (16) could be called 
neural predictors. 

 
5.1 Regression models for Survival Data 

Following the preceding considerations, GLMs may be 
adopted for studying the dependence of the hazard 
function from the covariates x. Without loss of 
generality, models for subjects grouped into K cells will 
be considered. For fitting the piecewise exponential and 
grouped time models, distributions from the exponential 
family are adopted, namely the Poisson for the 
empirical rates klγ  and the binomial for empirical 

proportions klp . To fit the two models, it is useful to 
minimize the distance function given by the difference 
between the maximum log-likelihood achieved by the 
perfect fit of each observation ( )yyl ;,φ  and that 

achieved for the model under investigation ( )yl ;,ˆ φµ , 
with estimates of the canonical parameter denoted by 

( )yθθ =
(

 and ( )µθθ ˆˆ = ; respectively. Thus: 
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which amounts to half the (scaled) deviance of the 
model, McCullagh and Nelder (24). This statistic allows 
defining in general way error functions for generalized 
regression models to be fitted with ANNs. The 
corresponding error functions for the piecewise 
exponential and the grouped time models for a single 
and competing risks are respectively 
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where klU  and kln  have the role of prior weights. 
For a single risk in the discrete context, a proportional 
odds model with the logit link, canonical with respect to 
(8), was proposed by Cox (12) as 
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models (without hidden units) for classification 
problems with error function (19), since the logit link is 
the inverse of the logistic activation function. The 
partial logistic artificial neural network (PLANN), 
proposed by Biganzoli et al. (3), follows such an 
approach to provide smoothed discrete hazard estimates 
by adopting a neural predictor (15) for model (21) and 
relaxing additivity constraints. The resulting MLP 
model is parameterized as follows 
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corresponding to the well known regression model for 
binary classification, with the logistic activation 

function ( ) ( )
( )u

uuh exp1
exp
+

=α ; the additional input for 

the time interval is included in ( )lkkl xv τ,= . In the 
Poisson model for competing risks, an input vector 

( )rxv lkklr ,,τ=  is used, with a further input for the 
specific cause of failure. The discrete time model for 
competing risks can be fitted by modelling the klre  with 
GLM with multinomial error and the canonical inverse 
multinomial logit link. 
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where ( )klr xη  is the model predictor, which can be 
either linear or neural as 
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Therefore, the single risk model has a logistic output 
activation function, whereas, for competing risks, the 
(22) is used considering R + 1 outputs. Such a function, 
called softmax in the ANN jargon, corresponds to the 
multinomial generalisation of the logistic function. 
It can be also considered that in such models, though 
approximate, the assumption of independence of the 
contribution to the likelihood for each individual across 
time intervals leads to reasonable results, extending 
arguments for the binomial model provided by Efron 
(13). Since the grouped time competing risk model can 
also be viewed as an extension of PLANN, Biganzoli et 
al. (3), (4), to multiple failures causes in a competing 
risks framework, it will be denoted by the acronym 
PLANNCR, Biganzoli et al. (8). 
In an analogous way, the log-linear piecewise 
exponential models with canonical link ( )[ ]il xhlog  
can be considered, Larson (18). A development of the 
approach was proposed in the competing risks 
framework, Boracchi and Biganzoli (11), by considering 
the RBF expansion (16) as a model predictor and the 
error function (17). 

6. APPLICATIONS TO CANCER DATA 

To show the general properties of the modelling 
approach, a problem of competing risks in breast 
cancer; is considered. The risk of local relapses (IBTR) 
and distant metastasis (DM) has been studied according 
to the patient age at surgery, tumour size, histological 
type, number of axillary metastatic lymph nodes and 
site of the tumor. The study includes 2233 patients 
hospitalized at the Istituto Nazionale per Studio e la 
Cura dei Tumori di Milano between 1970 and 1987. 
Details on the study and on the strategy adopted for the 
evaluation of the artificial neural net RBF models have 
been reported in the paper of Boracchi et al. (10). 
Globally, not monotonic patterns of the CSH functions 
in time and different covariate effects have been 
observed for the two considered event: IBTR and DM. 
The prognostic impact of age, tumour size and histology 
on IBTR appears more evident than that of the number 
of axillary metastatic lymph nodes and of tumour site. 
The CSH for IBTR decreases with the increase of the 
age (Fig. 1a in section 10), increases with the increasing 
of tumour size (Fig. 1b in section 10) and tends to 
decrease with the increase of the number of axillary 
metastatic lymph nodes (Fig. 1c in section 10). 
Concerning DM, the pattern of the risk in the time 
appears markedly not-monotonic and the maximum 
value is observed at about to two years and half of 
follow-up (Fig.2 in section 10). The impact of the 
tumour size and of the metastatic lymph nodes on DM 
appears to be more marked than that of the age, 
histology and tumour site. CSH weakly decreases as age 
increases, increases as tumour size and the number of 
axillary metastatic lymph nodes increase. The effect of 
the tumour size decreases with follow-up time, pointing 
out the possible time dependent role of this prognostic 
variable, in agreement with the findings in other case 
series. 

7. CONCLUSIONS 

Building a multiple regression model for outcome 
prediction is a problem of approximation of an unknown 
multivariate dependence relationship. In presence of 
non linear effects and/or non additives effects, an 
approach commonly assumed as ”natural” is that of 
including in the model, Schwarzer et al (26), polynomial 
terms and their cross-products. However, this approach 
is not necessarily optimal if low a priori knowledge of 
the phenomenon is available. FFNN and RBF models 
offer an alternative model parameterisation not 
constrained to strong assumptions on the effect of the 
covariates. Therefore, the use of neural network models 
for outcome prediction could be mostly relevant for 
exploratory analyses and as a benchmark for assessing 
the performances of other concurrent models. The 
PLANN(CR) model can provide relevant indications on 
the underlying patterns to the prognostic problem under 
evaluation, thus substantially contributing to the 
individual risk bioprofiling. Moreover the Bayesian 
extension of PLANN proposed by Lisboa et al. (21) 



faces the aspect of the optimal control of model 
complexity in a principled way. 
In recent research works, there was a specific interest in 
the application of advanced regression techniques such 
as neural networks for the analysis of 
genomic/proteomic data. Overall, a critical aspect is 
related to the evaluation of the model performance to 
assess the true gain from such approaches when applied 
on noisy data from microarray analyses, Biganzoli and 
Boracchi (4). Several applications regarded outcome 
prediction, but most of them failed to account for 
censored survival data. The latter situation is partly 
motivated by study design issues, Biganzoli et al (7). 
Nevertheless, waiting for the refinement of the omic 
techniques, a critical role of neural networks techniques 
for censored failure data can be played now, Biganzoli 
et al (5) for a substantial improvement of outcome 
prediction strategies in cancer, based on traditional 
and/or new clinical and biological markers. 
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10. LIST OF FIGURES 

 
 

 
 
Figure 1. Graph of the conditioned surface of the CSHs 
for IBTR as a function of age (a), tumour size (b) 
number of the metastatic axillary lymph nodes (c) other 
covariates are fixed to the median values for age and 
tumour size and to modal categories  for tumour site and 
histological type. 
 
 

 
 
 
 

 
Figure 2. Graph of the conditioned surface of the CSHs 
for DM as a function of age (a), tumour size (b) number 
of the metastatic axillary lymph nodes (c) other 
covariates are fixed to the median values for age and 
tumour size and to modal categories for tumour site and 
histological type. 
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