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ABSTRACT 

We present an overview of a new approach to 
cheminformatics based on neural networks for 
structures. In particular, we show the relevance of this 
methodology in the wider framework of new method 
development for biomaterial design and medicinal 
chemistry purposes. Current advancements, which 
include application to the prediction of properties for 
both small molecules and macromolecules, show the 
generality and flexibility of the proposed approach.  

Keywords: recursive neural networks, cheminformatics, 
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INTRODUCTION  

The aim of this paper is to put in evidence the evolution 
and potentiality of emergent computational intelligence 
approaches exploiting recursive neural networks for the 
applications to medical cheminformatics. After 
introducing the main motivations to collocate the 
current short-term studies into a wider frame of long-
term medical research results, an overview of the 
problem domain and of the methodology will be 
provided. Finally, a summary of the qualitative results 
of the current research, applied to different tasks, 
showing the potentiality and generality of the new 
approach will conclude the paper. 

Biomaterials and Cheminformatics. A major 
challenge confronting pharmaceutical chemists is the 
rationale design of drug molecules to optimize 
pharmacological interactions with their therapeutic 
targets and to enable them to circumvent biological 
barriers (e.g., intestinal mucosa, liver, blood-brain 
barrier) that separate the site of drug administration 
from the site of drug action [1]. The inability to 
circumvent such barriers often prevents leading drug 
candidates from being clinically developed. Therefore, 
scientists in the pharmaceutical industry employ in situ 
(e.g., perfused organs) and in vitro (e.g., tissue and cell 
cultures) tests in order to optimize both the 
pharmaceutical properties of drug candidates and the 
carrier systems. In fact, the ways in which drugs are 
administered also play a fundamental role in 
determining the therapeutic efficacy of a drug. 
Conventional dosage forms are not able to control either 
the rate of drug delivery or the target area of drug 
administration and provide an immediate or rapid drug 
release. This necessitates frequent administration in 
order to maintain a therapeutic level. As a result, drug 
concentrations in the blood and tissues fluctuate widely. 
The concentration of drug is initially high, that can 

cause toxic and/or side effects, then quickly falls down 
below the minimum therapeutic level. The duration of 
therapeutic efficacy is dependent upon the frequency of 
administration, drug half-life, and release rate from the 
dosage form. In contrast, controlled release systems are 
not only able to maintain therapeutic levels of drug with 
narrow fluctuations but they also make it possible to 
reduce the frequency of drug administration [2]. 

One way of modifying the biodistribution of drugs is to 
entrap them in submicroscopic drug carriers as 
nanospheres or nanocapsules [3]. Nanoparticles are 
solid colloidal particles made of synthetic or natural 
polymers with diameter ranging from about 10 to 1,000 
nm, in which biologically active molecules can be 
entrapped, dissolved, or encapsulated, and/or to which 
the active principle is adsorbed or attached. 
Nanospheres have a matrix type structure, whereas 
nanocapsules have a polymeric outer shell and an inner 
liquid core [4]. Nanoparticles can be designed for 
different kind of administration routes: intravenous, 
intramuscular, subcutaneous, oral, nasal, ocular, 
transdermal. The size and surface characteristics of 
nanoparticles, in terms of charge, hydrophilic-
hydrophobic balance, and presence of reactive groups 
will dramatically affect their body distribution and 
targeting attitude [5]. The sub-micron size allows 
nanoparticles to penetrate deep into tissues through fine 
capillaries, to cross the fenestration present in the 
epithelial lining, and to be taken up for drug delivery. 
Moreover, drug-loaded nanoparticles exposing targeting 
moieties could effectively and selectively drive the 
active principle at the desired site of action with 
substantial abatement of side effects.  

It must be stressed that a controlled release system 
comprises both the drug and the material in which the 
drug is loaded. Therefore, the selection of the drug and 
the polymer along with desired properties is a prime 
factor in designing a controlled release system. In 
particular, the pursuit of an adequate compromise of 
bulk and surface properties represents an important 
issue to be addressed. Among the general characteristics 
that drug delivery systems should present, it is possible 
to mention the ability to incorporate the drug without 
damaging it, tuneable release kinetics, long in vivo 
stability, lack of toxicity, carcinogenicity, and 
immunogenicity, potential of targeting specific organs 
and tissues. They should be also free of contaminants 
and leachables. It has also to be considered that the 
biological performance of a material depends on the 
host response to the biomaterial as well as to the 
material response to the living system. Biocompatibility 
tests identify any reactions that would lead to material 



failure or would result in disease. These effects include 
irritation, inflammation, pyrogenicity, interaction with 
blood, carcinogenicity, mutagenicity, systemic toxicity, 
sensitization, and reaction to foreign bodies. 

On a parallel research line, over the last few decades, 
there has been a marked development in science and 
technology of materials designed for biomedical 
implants. Many clinical justifications exist for the 
employment of implants. They are needed for the 
removal of congenital defects and for the replacement of 
tissues that have been either damaged or destroyed by 
pathological processes. Prosthetics and biomedical 
devices are fabricated from biomaterials and surgically 
inserted into the living body. They can serve as 
permanent or temporary replacement of body parts [6]. 
In the first case, medical devices may replace a 
damaged part of anatomy, e.g., total joint replacement; 
simulate a missing part, e.g., mammary prosthesis; 
correct a deformity, e.g., spinal plates; aid in tissue 
healing, e.g., burn dressings; rectify the mode of 
operation of a diseased organ, e.g., cardiac pacemakers; 
or aid in diagnosis, e.g., insulin electrodes. In the second 
case, the implants are intended to function in the body 
for some time in order to restore a tissue or an organ.  

In the early 1930s, the only biocompatible materials 
were wood, glass, and metals. These were used mostly 
in surgical instruments, paracorporeal devices, and 
disposable products. The advent of synthetic polymers 
and biocompatible metals in the latter part of the 
twentieth century has changed the entire character of 
health care. Polymers, metals, and ceramics originally 
designed for commercial applications have been adapted 
for prostheses, opening the way for implantable 
pacemakers, vascular grafts, catheters, and a variety of 
other orthopaedic devices. In recent years, polymeric 
biomaterials have gained increased importance through 
object-oriented synthesis, blends, and modifications that 
produce tailor-made characteristics for the areas where 
these materials are to be used. 

Tissue engineering is a relatively new and emerging 
interdisciplinary field that applies the knowledge of 
bioengineering, life sciences, and clinical sciences for 
trying to solve the critical medical problems of tissue 
loss and organ failure [7]. It involves applying 
engineering principles of transport and reaction 
phenomena as well as methods of analysis aimed at 
understanding the complex biological processes that 
occur in tissue development and repair. Tissue 
engineering exploits living cells into a variety of ways 
to restore, maintain, and enhance tissues and organs [8]. 
Indeed, engineered tissues could reduce the need for 
organ replacement as well as accelerate the 
development of new drugs thereby eliminating the need 
for organ transplants. To engineer living tissues in vitro, 
cultured cells are coaxed to grow on bioactive 
degradable scaffolds that provide the physical and 
chemical cues to guide their differentiation and 
assembly into three-dimensional structures. Materials 

used for tissue engineering applications must be 
designed to stimulate specific cell response at molecular 
level. They should elicit specific interactions with cell 
integrins and thereby direct cell proliferation, 
differentiation, and extracellular matrix production and 
organization. A careful control of the topochemical 
microstructure of the material surface is strongly 
required to accomplish this goal. Indeed, the selection of 
biomaterials constitutes a key point for the success of 
tissue engineering practice. Moreover, these products 
must retain their functions effectively and safely over 
the desired period of time, without irritation of the 
surrounding tissue by either mechanical action or 
possible degradation products. This is ensured only 
when the biomaterial is biocompatible. Several 
overlapping processes determine biocompatibility. Not 
only the material mechanical and chemical-physical 
characteristics but also the special place of application, 
the individual reaction of the complement system, and 
the cellular immune system as well as the physical 
condition of the patient influence the material tolerance. 

In tissue engineering, the chemical and physical 
characteristics of the biomaterial surface, which are 
responsible for the biological reactions at the interface 
are certainly of great importance. Influencing factors are 
the surface chemical structure, hydrophilicity, 
morphology, and the topography [9]. Surface 
characteristics can considerably differ from polymer 
bulk characteristics. Due to the minimization of the 
surface energy, the non-polar groups move to the phase 
boundary with air [10]; migration of low molecular 
components leads to differences between the surface 
and the bulk [11]. At the phase boundary between the 
biomaterial and the aqueous surroundings of the tissue, 
the situation is very different from that between the 
biomaterial and air. Thus, the surface characteristics can 
considerably change after the biomaterial is taken from 
an air medium into an aqueous system. 

When the implant is exposed to the biological system, 
the following reactions are observed: (i) within the first 
few seconds, proteins are deposited from the 
surrounding body liquids. The structure of the adsorbed 
proteins is dependent on the surface characteristics of 
the implanted material. Additionally, the adsorbed 
proteins are subject to conformational changes as well 
as exchange processes with other proteins [12]. (ii) The 
tissue in contact with the implant reacts with dynamic 
processes that are comparable to body reactions in cases 
of injuries or infections. Due to mechanical and 
chemical stimuli, the implant can lead to a lasting 
stimulus of inflammation processes. As a result of being 
accepted by the organism, a biocompatible implant 
should thus be surrounded with a thin tissue layer, 
which is free of inflammation cells [13]. (iii) During the 
course of the contact between the biomaterial and the 
body, the aggressive body medium will cause 
degradation processes. Hydrolytic and oxidative 
processes can lead to the loss of mechanical stability 
and to the release of degradation products [14].  



(iv) Because of the transport of soluble degradation 
products through the lymph and vessel systems, a 
reaction of the whole body towards the implant cannot 
be excluded. Infection of the biomaterial with bacteria 
has to be considered as an additional obstacle [15]. 

The description of the factors that together determine 
the biocompatibility of an implant shows the diversity 
of the processes. Moreover, while the term 
biocompatibility refers to the tolerance of biomaterials 
with liquid or solid body elements, the term 
hemocompatibility defines the tolerance of biomaterials 
with blood. Due to the enormous demand for implants 
and medical-technical goods for the cardiovascular area, 
blood tolerance is of great importance. From a clinical 
point of view, a biomaterial can be considered as blood 
compatible when its interaction with blood does not 
provoke either any damage of blood cells or any change 
in the structure of plasma proteins [9]. As a 
consequence of the non-specific protein adsorption and 
adhesion of blood cells, the contact of any biomaterial 
with blood often leads to different degrees of clot 
formation [16]. The competitive adsorption behaviour 
of proteins at the biomaterial surface determines the 
pathway and extent of intrinsic coagulation and 
adhesion of platelets. Predictions about the interactions 
between the biomaterial surface and the adsorbed 
proteins can only be formulated by having an exact 
knowledge of the structure of the biomaterial surface 
and of the conformation of the adsorbed proteins [17]. 

By examining the polymeric materials that are currently 
used in clinical application, it can be seen that while 
their mechanical properties satisfy requirements, their 
total compatibility with blood has still not been 
achieved. Therefore, commercial polymers, which are 
used as short-term implant materials, show 
thrombogenic properties and require the introduction of 
anticoagulants [18]. As a result of the complex 
interactions between the implant and the tissue, the 
expectation of unsatisfactory implant biocompatibility 
and/or hemocompatibility is high. Until now, it has not 
been possible to quantitatively understand these 
processes, and to relate them to the chemical structure 
of the biomaterial. Thus the design and the development 
of suitable biomaterials for successful use of implants is 
difficult. At the same time, in the field of drug design, 
the development of combinatorial chemistry has 
allowed the synthesis of a lot of compounds of medical 
interest, but the application of experimental test is 
cumbersome, expensive, and time consuming. 
Consequently, the development of predictive methods to 
evaluate candidates for specific applications has gained 
urgency both in drug delivery and in tissue engineering 
fields. 

In time, significant efforts have been spent on the 
development of Quantitative Structure-Activity/ 
Property Relationship (QSAR/QSPR) techniques in 
order to predict the physical, chemical, biological, 
biomedical, and technological properties of molecules. 

The aim of a QSAR/QSPR approach is to find an 
appropriate function, F, which given a proper 
representation of a molecule predicts its biological 
activity or a selected property, as in the following:  

 Property = F(Structure) 

The function F can be described as the sequential 
solution of two main problems (see e.g. [19-21]): (i) the 
feature representation problem, i.e., how to encode 
molecules through the extraction and selection of 
structural features; and (ii) the mapping problem, 
usually faced by linear or non-linear regression tools 
(i.e., a mapping function). In more detail, the feature 
representation process requires the solution of two 
subtasks: the first one for the explicit representation of 
the significant structural information carried by 
molecules, and the second one for the encoding of this 
structural information into a numerical representation 
(by an encoding function). 

Traditional QSAR/QSPR approaches, employing 
standard regression methods (from linear regression to 
standard neural network) take as input fixed-size 
numerical vectors. As a consequence, all molecules 
must be reduced to vectors of the same dimension by 
using a suitable group of molecular descriptors. The 
molecule can be represented by using different encoding 
approaches, such as, the selection of physical-chemical, 
geometrical, and electronic properties; the calculation of 
topological or connectivity indices; the occurrence of 
each group in the molecular structure. The need for 
molecular descriptors limits the type of modelled 
molecules (for example there are no descriptors for 
inorganic metal complexes) and determines the 
applicability of the method. As a matter of fact, the 
number and types of numerical descriptors used to 
represent chemical compounds are strictly dependent on 
the (target) property under study; for this reason, the 
models are not target-invariant. In particular, an expert 
has to start again from scratch the process of choosing 
suitable descriptors whenever a different property is 
investigated. 

The central point of our analysis stems from the fact that 
molecules are not simply fixed-size vectors of numbers 
but they are more naturally described via a varying size 
structured representation. Beside specific success and 
the capability to abstract from expensive experimental 
test, the direct treatment of molecules in their natural 
form of structured objects is still an open issue of the 
current QSPR/QSAR approaches. To overcome this 
problem we introduce the use of the Recursive Neural 
Network, a model able to predict the desired properties 
directly from a structured representation of molecules.  

NEURAL NETWORK FOR STRUCTURES 

Before entering in the description of the results, let us 
introduce the basics of the Recursive Neural Networks 
(RNN) model we used to tackle the learning in 



structured domain for chemical data. A recurrent neural 
network distinguishes itself from a feedforward network 
(Multi-layer Perceptron) by having feedback loop 
connections in its topology, i.e. a weighted version of 
the output is fed back into the input. The presence of 
feedback provides the neural model with dynamic 
properties, by the use of contextual internal states 
(memory). The first exploitation of this concept 
concerned recurrent neural networks able to deal with 
sequences by a dynamic learned internal memory. 

The recursive neural network is the generalization of the 
recurrent model to deal with more complex structures, 
e.g. labelled trees and labelled DPAGs (Directed 
Positional Acyclic Graphs) [22]. In such structures, for 
each vertex (or node) a total order is defined on the 
edges leaving from it and a position is assigned to each 
edge. We assume a bounded out-degree and that each 
DPAG possesses a super-source, i.e. a vertex s such that 
every vertex in the graph can be reached by a directed 
path starting from s. Labels are tuples of variables 
attached to vertexes. Let ℜn denote the label space. In 
particular, k-ary trees (trees in the following) are rooted 
positional trees with finite out-degree k, i.e. k is the 
maximum number of children for each node. The 
supersource is the root of the tree. 

In the framework of the QSPR/QSAR analysis, and 
according to the RNN architecture, the processing of a 
RNN can be presented as the sequential application of 
two functions, an encoding function and a mapping 
function. Let us consider a realization of the two 
functions by a recursive neural network with m hidden 
neurons, i.e. a fully connected recursive neural network 
with one hidden layer. The encoding of an input 
structure, e.g. a tree T, is made by the hidden units 
computing for each vertex of T a numerical code (x in 
ℜm) using information both of the vertex label (l in ℜn) 
and, recursively, of the code, denoted as x(j) in ℜm, of 
the sub-trees descending from the current vertex. The 
encoding function, i.e. the output x of the hidden units 
for a vertex v (the code of v), is computed as: 

 x = Φ(W l+ ˆ W j x ( j )

j=1

k
� ) (1) 

where Φ is a set of m sigmoid functions, W in ℜm×n is 
the weight (free-parameters) matrix associated with the 
label space, and jŴ  in ℜm×m is the weight (free-
parameters) matrix associated with the j-th sub-tree 
space. The bias is included in the label l. Through 
Equation 1 the encoding function is recursively 
computed for all the vertexes of the input structure and a 
code for the whole structure is returned at the root. 

An instance of this model with m=1, i.e. a single 
recursive neuron unit, is graphically shown in Figure 1: 
the current information is expressed by the label field 
(l1,..., ln) of the vertex. Note that the vector x(j) can be 
considered an extension of the inputs to the standard 

neuron that store the information from previous outputs 
of the model. The extended inputs represent “context” 
information about the subgraphs of the current 
processed input vertex. The weights �j, j=1,...,k are 
specific of the recursive neuron (with respect to the 
standard one) and they are the free parameters 
associated to the stored sub-tree codes. 

 

Figure 1: A single recursive unit. 

Different architectures of the neural network that realize 
the encoding function can be considered. In particular, 
in the following we used a constructive approach, a 
Recursive Cascade Correlation method [21,22], which 
adds the hidden recursive neurons during the training of 
the model. Since this method automatically determines 
the number m of hidden units, it has been found 
particularly useful in the applications when no 
information is given on the complexity of the problem. 
In order to realize the output mapping function for the 
regression model, we use a single linear output neuron: 

 θ+== Axx)(gy  (2) 

where A is a weight (free-parameters) matrix in ℜm and 
θ is the output threshold. 

The encoding process of the RNN is graphically 
represented in Figure 2 for two input structures 
representing 1-methoxypropane and 2-methyl-
2propanol, respectively. 
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Figure 2: Unfolding the encoding process through 
structures. Each box includes the sub-trees 
progressively encoded by the recursive neural network. 



Note that the encoding process mimics the morphology 
of each compound. As shown in Figure 2, the encoding 
is a bottom-up process starting at the leaves (black 
arrows in Figure 2). This corresponds to a visit 
(traversal) of the input tree according to an inverse 
topological order. 

The model described in Equation 1 is applied for each 
step of the traversal. For each vertex, the model uses the 
label of the vertex and, recursively, the encoding value 
of the subtrees descending from the current vertex 
(depicted by the boxes in Figure 2). At the root, this 
process computes a code of the whole molecular 
structure. The code is then mapped to the output 
property value by the output function y=g(x). 

We can summarize the characteristics of the RNN 
approach in the context of QSPR/QSAR application by 
the following main points: 

• RNNs take directly a structured representation of 
the molecules as input; 

• The recursive models can learn (tuning the free-
parameters) how to encode the structured 
representation of the molecules according to the 
given QSPR/QSAR task; 

• Through the encoding and mapping function the 
RNN models a direct and adaptive relationship 
between molecular structures and target properties; 

• Hence, RNNs discover by learning the specific 
structural descriptors (numerical code) for the 
QSPR/QSAR task at hand. As a result, no a priori 
definition and/or selection of properties by an 
expert are needed. 

APPLICATIONS OVERVIEW 

The first successful applications of this model were 
achieved predicting the boiling points of linear and 
branched alkanes and the pharmacological activity of a 
series of substituted benzodiazepine [19-21,23]. More 
recently, further advancements have been done to deal 
with a widest set of molecular structures and to address 
different chemical tasks [24,25]. 

In particular, we tested the RNN-based method for 
small molecules by applying it to the prediction of 
standard free energy, ∆solvG°, of solvation in water of a 
set of almost 300 linear mono- and poly-functional 
organic compounds. Afterwards, according to the goals 
described in the Introduction, we extended the method 
to macromolecules by investigating the glass transition 
temperature, Tg, of a set of acyclic hydrocarbon-chain 
polymers. The wide class of different chemical data and 
QSPR/QSAR problems faced by these applications 
provide the support to show the generality of the 
approach. 

Concerning the first task, we considered the prediction 
of the solvation free energy of small organic molecules 
that is a parameter of considerable interest in drug 
design [26], in the analysis of protein folding and 
binding [27], and in the development of force fields by 
computer simulation [28-30]. In fact, the standard 
solvation free energy of a solute A in water and in a 
selected immiscible organic solvent, can be related to 
the logarithm of partition coefficient, logP, of A 
between the two liquid media. The partition coefficient 
is of critical importance for solvent extraction, in 
environmental and pharmaceutical applications. As a 
matter of fact, the transport of a molecule from the 
aqueous medium of the extracellular region to the 
cytoplasm is often ruled by passive diffusion across the 
lipid bilayer of the cell membrane and it is closely 
connected to its lipophilicity. For a given solute, this 
property is usually expressed by logP between water 
and a suitable apolar organic solvent [31-35]. In other 
words, the bioactivity of a molecule can be related to its 
logP. Furthermore, solvation properties were selected as 
the target property because of the availability of a large 
dataset of reliable literature data. Indeed, a 
homogeneous and critically reviewed data base is 
needed in order to reliably assess which performances 
may come from the application of the proposed model 
to a given problem. 

In our approach, the representation of a molecule is 
directly derived from its molecular structure alone. For 
this purpose we describe the molecule as a 2-D graph 
that can be easily obtained from the structural formula. 
The investigated molecular structures were represented 
in terms of labelled rooted trees (k-ary trees), which are 
the subclasses of DPAGs covering the investigated 
structures. To this aim we studied an appropriate set of 
rules in order build a unique chemical tree for each 
molecule. Since labelled structures are high abstract and 
graphical tools we could describe a molecule at different 
levels of detail, such as atom bonds and/or chemical 
groups. In particular, each compound was divided into 
defined atomic groups. Each group corresponds to a 
vertex of the tree and each bond between them 
corresponds to an edge. We chose the smallest number 
of atomic groups able to build the greatest number of 
molecules in a reasonably compact form. The labels of 
vertex are categorical attribute distinguishing the 
symbols of the atomic groups. We decided to place the 
root in the functional group characteristic of the class to 
which the molecule pertains, all the other groups 
descending from it are considered branches.  

The results obtained by using the proposed model were 
satisfactory. Various splittings of the data were used for 
training and validation purposes. We found that the data 
used for training the system were reproduced within the 
experimental error; the data of test sets were predicted 
with a mean absolute error and standard deviation lower 
than those reported in the literature for standard QSPR 
methods (for details see refs. 24 and 25). 



Over the years, theoretical studies performed on the 
solvation process have allowed the identification of 
electronic, superficial, structural, and chemical 
reactivity characteristics that concur in determining the 
solvation free energy. By having in mind these 
information, we investigated the RNN learning process 
by principal component analysis (PCA) of the internal 
representation of molecules (i.e. the output of the 
encoding function) built by the neural network. 

The PCA analysis has shown that the RNN is able to 
cluster the molecules not only by considering the 
chemical similarity of the molecular trees, but also by 
abstracting chemical information from the relationships 
between structures and targets learned by the model. For 
instance, the solvent accessibility of polar groups and 
their ability to act as hydrogen bond donor and/or 
acceptor are responsible of the distribution of polar 
molecules in the representation space developed by the 
RNN. However, it has been observed that the chemical 
knowledge abstracted by the model cannot be trivially 
decoupled into single effects. On the contrary, the 
model combines the structural and chemical features of 
the molecules by developing a sort of “smooth rule”, 
reflected by the spread of the points in the clusters, 
globally accounting for the complexity of the stereo-
electronic properties of molecules. 

The success obtained with small molecules encouraged 
us to extend the approach to the prediction of polymer 
properties. In the present research, the glass transition 
temperature of a set of acyclic polymers including 
polyacrylates, polymethacrylates, polyacrylamides, 
polymethacrylamides, and some α- and β-substituted 
polyacrylics and polymethacrylics was investigated. 
Acrylic and methacrylic polymers were chosen because 
of the availability of a large number of experimental 
data, which allows for testing the potential of our RNN 
model with macromolecules. On the other hand, it is 
well known that the glass-rubber transition is of 
considerable technological significance. In fact, the Tg 
determines the utilization limits of rubbers and 
thermoplastic materials. For instance, the Tg of 
materials designed to replace soft and hard tissue must 
be lower than and well above body temperature, 
respectively.  

In order to predict polymers Tg property, standard 
regression methods are reported in literature [36-43]. 
These methods use molecular descriptors for the 
representation of the molecular structure. The 
limitations associated with standard QSAR/QSPR 
methods already evidenced in the treatment of small 
molecules are exacerbated in the case of polymers. 
Molecular descriptors are indeed inadequate tools for 
the complete description of the whole macromolecular 
structure in that they can be only evaluated for one 
repeating unit or for a short repeating unit sequence at 
the best. Moreover, material properties are not only 
intrinsic to the polymer chemical structure, but they also 
depend on average characteristics of the polymer, such 

as, molecular weight, polydispersity index, stereo-
regularity, repeating unit distribution. As a 
consequence, these methods are mostly used for 
amorphous polymeric materials and are not applied to 
copolymers, which convey repeating units with different 
molecular structures. On the other hand, direct treatment 
of structured data, as it is possible with our RNN model, 
enables to by-pass the limitations associated with the 
use of molecular descriptors. 

The representation of each polymer was based on the 
2D graph of its repeating unit treated as a small 
molecule. In particular, each repeating unit was 
decomposed by using the same atomic groups, labels, 
and priority rules defined for low molecular weight 
compounds. With respect to the small molecule 
representation, the most relevant innovation was the 
positioning of the tree root. Indeed, the root was not 
placed on the highest-priority chemical group, but on an 
additional super-source vertex (the group “Start”), not 
related to the molecular graph. The super-source 
conveys information on the average macromolecule 
characteristics through its label. This allows the model 
to account for both the repeating unit detailed 2D 
structure and macromolecule average characteristics. In 
the first application of this approach, we encoded the 
information of polymer stereoregularity (tacticity) in the 
super-source label as the fraction of rr dyads. It is worth 
to note that this extension of the representation of 
molecules to macromolecules is a further point showing 
the flexibility of a structured representation approach. 

The RNN capability of handling structured data together 
with this original representation of structures results in a 
good model for predicting polymer properties. The 
results obtained in predicting the Tg are quite 
promising. In particular, the RNN model found the Tg-
tacticity relationship by treating together polymers with 
either only one or different tacticity forms. In particular, 
the potential of the RNN model to take into account the 
extent and type of stereoregularity of the polymer chains 
is of paramount importance because of the impact of 
these features on several properties of the materials. For 
instance, very often stereoregular polymers are highly 
crystalline, whereas atactic polymers are amorphous. On 
the other hand, methods able to correlate the Tg of 
polymers with their tacticity are lacking in literature.  

The results obtained until now highlighted the greater 
generality and flexibility of our method and of the 
adopted representation with respect to standard 
literature methods. In fact, the RNN method can treat 
small molecules and polymers with the same 
fundamental approach. In the latter case, the method 
allows for taking into account also the mean 
macromolecular characteristics and for the simultaneous 
handling of polymers for which one or more values of 
the considered average property exist. Moreover the 
molecular representation can be naturally extended to 
the treatment of all types (random, alternating, block) of 
copolymers. 



In closing the overview of the results and of the 
potential of the proposed method, it must also be 
mentioned that the analysis of training set outliers was 
useful to pick out of the data sets the least reliable data 
of both ∆solvG° and Tg. For instance, these results have 
been confirmed by recent literature on polyacrylics and 
polymethacrylics. This enabled to exploit the RNN, 
beside prediction, even for data cleaning and data 
assessment purposes. 

CONCLUDING REMARKS 

The various examples of application to the 
cheminformatics domain show the potentiality of a 
widespread application of structure domain learning 
methods for the drug delivery and the tissue engineering 
fields, and, more in general, for biomedical, 
biochemistry and medicinal chemistry problems. In fact, 
the processing of structured data by recursive neural 
networks have been shown to be effective in real-world 
applications concerning chemical tasks, i.e. the 
prediction of chemical properties directly from 
molecular structures. This approach can be seen as a 
paradigmatic instance of the wider problem of 
processing structured data by machine learning tools in 
medical and biological fields. Indeed, biological and 
biochemical problems are often characterized by quite 
complex domains where managing of relationships and 
structures, in form of sequences, trees, and graphs, is 
important to achieve suitable modeling of the solutions.  

Main potential developments concern hard tasks in 
toxicology, genomics, proteomics, and bioinformatics in 
general, whenever is natural to find useful structured 
representation of chemical/biological data or there is the 
need to capture relevant information such as topological 
or functional description of the data. Moreover, the 
flexibility of the structured data learning approach can 
be exploited to integrate different kind of data arising in 
medical domain, including genetic, biological, clinical 
and chemical data. This research can lead to novel 
approach to pharmacogenetics for personalized 
medicine purposes. 

The final aim of the long-term research in such fields is 
the development of predictive models able to accelerate 
the discovery of new drugs and new biomaterials, 
including the studies on their potential genotoxicity, 
carcinogenicity, or other pharmaceutical toxicity, to 
anticipate adverse health effect. It is worth noting that 
the machine learning methods able to deal with 
structured and complex data domains offers the 
opportunity to treat in the same compact computational 
frame such heterogeneous data and problems.  
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