S. Wang,
Y. Li,
D. Wang,
W. Zhang,
X. Chen,
D. Dong,
S. Wang,
X. Zhang,
P. Lin,
C. Gallicchio,
X. Xu,
Q. Liu,
K.-T. Cheng,
Z. Wang,
D. Shang,
and
M. Liu
Echo state graph neural networks with analogue random resistive memory arrays
Nature Machine Intelligence,
5,
104-113,
2023
A. Micheli
and
D. Tortorella
Discrete-time dynamic graph echo state networks
Neurocomputing,
496,
85-95,
2022
F. M. Bianchi,
C. Gallicchio,
and
A. Micheli
Pyramidal reservoir graph neural network
Neurocomputing,
470,
389-404,
2022
C. Gallicchio
and
A. Micheli
Architectural richness in deep reservoir computing
Neural Computing and Applications,
2022
D. Castellana,
F. Errica,
D. Bacciu,
and
A. Micheli
The Infinite Contextual Graph Markov Model
Proceedings of the 39th International Conference on Machine Learning (ICML 2022),
162,
2721-2737,
2022
L. Oneto,
N. Navarin,
B. Biggio,
F. Errica,
A. Micheli,
F. Scarselli,
M. Bianchini,
L. Demetrio,
P. Bongini,
A. Tacchella,
and
A. Sperduti
Towards learning trustworthily, automatically, and with guarantees on graphs: An overview
Neurocomputing,
493,
217-243,
2022
F. Errica,
D. Bacciu,
and
A. Micheli
Graph Mixture Density Networks
Proceedings of the 38th International Conference on Machine Learning (ICML 2021),
139,
3025-3035,
2021
C. Gallicchio
and
A. Micheli
Fast and Deep Graph Neural Networks
Proceedings of the 34th AAAI Conference,
2020
M. Podda,
D. Bacciu,
and
A. Micheli
A Deep Generative Model for Fragment-Based Molecule Generation
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics (AISTATS),
PMLR,
2020
P. Bove.,
A. Micheli.,
P. Milazzo.,
and
M. Podda.
Prediction of Dynamical Properties of Biochemical Pathways with Graph Neural Networks
Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS,
(Best Paper Award),
SciTePress,
2020,
ISBN 978-989-758-398-8
D. Bacciu,
F. Errica,
and
A. Micheli
Probabilistic Learning on Graphs via Contextual Architectures
Journal of Machine Learning Research,
21(134),
1-39,
2020
D. Bacciu,
F. Errica,
A. Micheli,
and
M. Podda
A Gentle Introduction to Deep Learning for Graphs
Neural Networks,
129,
203-221,
2020
F. Errica,
M. Podda,
D. Bacciu,
and
A. Micheli
A Fair Comparison of Graph Neural Networks for Graph Classification
Proceedings of the 8th International Conference on Learning Representations (ICLR),
2020
C. Gallicchio
and
A. Micheli
Deep Reservoir Neural Networks for Trees
Information Sciences,
480,
174-193,
2019
D. Bacciu
and
F. Crecchi
Augmenting Recurrent Neural Networks Resilience by Dropout
IEEE Transactions on Neural Networks and Learning Systems,
1-7,
2019
D. Bacciu
and
D. Castellana
Bayesian Mixtures of Hidden Tree Markov Models for Structured Data Clustering
Neurocomputing,
342,
49-59,
2019
D. Bacciu,
F. Errica,
and
A. Micheli
Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing
Proceedings of the 35th International Conference on Machine Learning (ICML),
2018,
ISBN 9781510867963
C. Gallicchio
and
A. Micheli
Deep Tree Echo State Networks
Proceedings of the International Joint Conference on Neural Networks (IJCNN),
IEEE,
2018,
ISBN 9781509060146
C. Gallicchio,
A. Micheli,
and
L. Silvestri
Local Lyapunov exponents of deep echo state networks
Neurocomputing,
298,
34-45,
2018
M. Podda,
D. Bacciu,
A. Micheli,
R. Bellù,
G. Placidi,
and
L. Gagliardi
A machine learning approach to estimating preterm infants survival: development of the Preterm Infants Survival Assessment (PISA) predictor
Scientific Reports,
8,
2018
C. Gallicchio
and
A. Micheli
Deep Echo State Network (DeepESN): A Brief Survey
Technical Report,
2018
C. Gallicchio,
A. Micheli,
and
L. Pedrelli
Design of deep echo state networks
Neural Networks,
108,
33-47,
2018
D. Bacciu,
A. Micheli,
and
A. Sperduti
Generative Kernels for Tree-Structured Data
IEEE Transactions on Neural Networks and Learning Systems,
29,
4932-4946,
2018
C. Gallicchio,
A. Micheli,
and
L. Pedrelli
Deep Reservoir Computing: A Critical Experimental Analysis
Neurocomputing,
268,
87-99,
2017
C. Gallicchio,
J. D. Martin-Guerrero,
A. Micheli,
and
E. Soria-Olivas
Randomized Machine Learning Approaches: Recent Developments and Challenges
Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN),
2017,
ISBN 978-287587038-4
C. Gallicchio
and
A. Micheli
Echo State Property of Deep Reservoir Computing Networks
Cognitive Computation,
9,
337-350,
2017
F. Palumbo,
C. Gallicchio,
R. Pucci,
and
A. Micheli
Human Activity Recognition using Multisensor Data Fusion based on Reservoir Computing
Ambient Intelligence and Smart Environments,
8,
87-107,
2016
R. Barbuti,
S. Chessa,
A. Micheli,
and
R. Pucci
Localizing Tortoise Nests by Neural Networks
Plos One,
11,
1-27,
2016
D. Bacciu,
C. Gallicchio,
and
A. Micheli
A reservoir activation kernel for trees
Proceedings of the 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),
2016,
ISBN 978-287587027-8
C. Gallicchio
and
A. Micheli
Deep reservoir computing: A critical analysis
Proceedings of the 24th European Symposium on Artificial Neural Networks (ESANN),
2016,
ISBN 9782875870278
M. Dragone,
G. Amato,
D. Bacciu,
S. Chessa,
S. Coleman,
M. D. Rocco,
C. Gallicchio,
C. Gennaro,
H. Lozano-Peiteado,
L. Maguire,
M. T. Mcginnity,
A. Micheli,
G. M. P. O׳Hare,
A. Renteria,
A. Saffiotti,
C. F. Vairo,
and
P. Vance
A cognitive robotic ecology approach to self-configuring and evolving AAL systems
Engineering Applications of Artificial Intelligence,
45,
269-280,
2015
E. Crisostomi,
C. Gallicchio,
A. Micheli,
M. Raugi,
and
M. Tucci
Prediction of the Italian electricity price for smart grid applications
Neurocomputing,
170,
286-295,
2015
G. Amato,
D. Bacciu,
M. Broxvall,
S. Chessa,
S. Coleman,
M. D. Rocco,
M. Dragone,
C. Gallicchio,
C. Gennaro,
H. Lozano-Peiteado,
M. T. Mcginnity,
A. Micheli,
A. Ray,
A. Renteria,
A. Saffiotti,
D. Swords,
C. F. Vairo,
and
P. Vance
Robotic Ubiquitous Cognitive Ecology for Smart Homes
Intelligent & Robotic Systems,
80,
57-81,
2015
D. Bacciu,
P. Barsocchi,
S. Chessa,
C. Gallicchio,
and
A. Micheli
An experimental characterization of reservoir computing in ambient assisted living applications
Neural Computing & Applications,
24,
1451-1464,
2014
D. Bacciu,
A. Micheli,
and
A. Sperduti
Compositional Generative Mapping for Tree-Structured Data - Part II: Topographic Projection Model
IEEE Transactions on Neural Networks and Learning Systems,
24,
231-247,
2013
C. Gallicchio
and
A. Micheli
Tree Echo State Networks
Neurocomputing,
101,
319-337,
2013
D. Bacciu,
A. Micheli,
and
A. Sperduti
Compositional Generative Mapping for Tree-Structured Data - Part I: Bottom-Up Probabilistic Modeling of Trees.
IEEE Transactions on Neural Networks and Learning Systems,
23,
1987-2002,
2012
C. Gallicchio
and
A. Micheli
Architectural and Markovian factors of echo state networks
Neural Networks,
24,
440-456,
2011
C. G. Bertinetto,
C. Duce,
A. Micheli,
R. Solaro,
and
M. R. Tiné
QSPR analysis of copolymers by recursive neural networks: Prediction of the glass transition temperature of (meth)acrylic random copolymers
Molecular Informatics,
29,
635-643,
2010
F. Masulli,
A. Micheli,
and
A. Sperduti
Computational Intelligence and Bioengineering
Frontiers in Artificial Intelligence and Applications,
196,
0-213,
2009
C. Bertinetto,
C. Duce,
A. Micheli,
R. Solaro,
A. Starita,
and
M. R. Tiné
Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks
Molecular Graphics and Modelling,
27,
797-802,
2009
A. Micheli
Neural Network for Graphs: A Contextual Constructive Approach
IEEE Transactions on Neural Networks,
20,
498-511,
2009
D. Bacciu
and
A. Starita
Competitive Repetition Suppression (CoRe) Clustering: A Biologically Inspired Learning Model With Application to Robust Clustering
IEEE Transactions on Neural Networks,
19,
1922-1941,
2008
L. Bernazzani,
C. Duce,
A. Micheli,
V. Mollica,
A. Sperduti,
A. Starita,
and
R. T. M.
Predicting Physical-Chemical Properties of Compounds from Molecular Structures by Recursive Neural Networks
Chemical Information and Modeling,
46,
2030-2042,
2006
B. Hammer,
A. Micheli,
and
A. Sperduti
Universal Approximation Capability of Cascade Correlation for Structures
Neural Computation,
17,
1109-1159,
2005
B. Hammer,
A. Micheli,
A. Sperduti,
and
M. Strickert
Recursive Self-organizing Network Models
Neural Networks,
17,
1061-1085,
2004
A. M. Bianucci,
A. Micheli,
A. Sperduti,
and
A. Starita
A Novel Approach to QSPR/QSAR Based on Neural Networks for Structures
Soft Computing Approaches in Chemistry,
Springer-Verlag,
2003,
ISBN 3540002456
A. Micheli,
A. Sperduti,
A. Starita,
and
A. M. Bianucci
Analysis of the Internal Representations Developed By Neural Networks for Structures Applied to Quantitative Structure-Activity Relationship Studies of Benzodiazepines
Chemical Information and Computer Sciences,
41,
202-218,
2001
A. M. Bianucci,
A. Micheli,
A. Sperduti,
and
A. Starita
Application of Cascade Correlation Networks for Structures to Chemistry
Applied Intelligence,
12,
117-146,
2000
Alessio Micheli
Tel: +39 050 2212798
Email: micheli@di.unipi.it
Dipartimento di Informatica
Largo B. Pontecorvo, 3
56127 Pisa, Italy