Selected Publications


Other publications are available at  https://arpi.unipi.it/.

S. Wang, Y. Li, D. Wang, W. Zhang, X. Chen, D. Dong, S. Wang, X. Zhang, P. Lin, C. Gallicchio, X. Xu, Q. Liu, K.-T. Cheng, Z. Wang, D. Shang, and M. Liu
Echo state graph neural networks with analogue random resistive memory arrays Nature Machine Intelligence, 5, 104-113, 2023

URL RIS BibTex

A. Micheli and D. Tortorella
Discrete-time dynamic graph echo state networks Neurocomputing, 496, 85-95, 2022

URL RIS BibTex

F. M. Bianchi, C. Gallicchio, and A. Micheli
Pyramidal reservoir graph neural network Neurocomputing, 470, 389-404, 2022

URL RIS BibTex

C. Gallicchio and A. Micheli
Architectural richness in deep reservoir computing Neural Computing and Applications, 2022

URL RIS BibTex

D. Castellana, F. Errica, D. Bacciu, and A. Micheli
The Infinite Contextual Graph Markov Model Proceedings of the 39th International Conference on Machine Learning (ICML 2022), 162, 2721-2737, 2022

RIS BibTex

L. Oneto, N. Navarin, B. Biggio, F. Errica, A. Micheli, F. Scarselli, M. Bianchini, L. Demetrio, P. Bongini, A. Tacchella, and A. Sperduti
Towards learning trustworthily, automatically, and with guarantees on graphs: An overview Neurocomputing, 493, 217-243, 2022

URL RIS BibTex

F. Errica, D. Bacciu, and A. Micheli
Graph Mixture Density Networks Proceedings of the 38th International Conference on Machine Learning (ICML 2021), 139, 3025-3035, 2021

RIS BibTex

C. Gallicchio and A. Micheli
Fast and Deep Graph Neural Networks Proceedings of the 34th AAAI Conference, 2020

URL RIS BibTex

M. Podda, D. Bacciu, and A. Micheli
A Deep Generative Model for Fragment-Based Molecule Generation Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR, 2020

URL RIS BibTex

P. Bove., A. Micheli., P. Milazzo., and M. Podda.
Prediction of Dynamical Properties of Biochemical Pathways with Graph Neural Networks Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3: BIOINFORMATICS, (Best Paper Award), SciTePress, 2020, ISBN 978-989-758-398-8

URL RIS BibTex

D. Bacciu, F. Errica, and A. Micheli
Probabilistic Learning on Graphs via Contextual Architectures Journal of Machine Learning Research, 21(134), 1-39, 2020

URL RIS BibTex

D. Bacciu, F. Errica, A. Micheli, and M. Podda
A Gentle Introduction to Deep Learning for Graphs Neural Networks, 129, 203-221, 2020

URL RIS BibTex

F. Errica, M. Podda, D. Bacciu, and A. Micheli
A Fair Comparison of Graph Neural Networks for Graph Classification Proceedings of the 8th International Conference on Learning Representations (ICLR), 2020

URL RIS BibTex

C. Gallicchio and A. Micheli
Deep Reservoir Neural Networks for Trees Information Sciences, 480, 174-193, 2019

URL RIS BibTex

D. Bacciu and F. Crecchi
Augmenting Recurrent Neural Networks Resilience by Dropout IEEE Transactions on Neural Networks and Learning Systems, 1-7, 2019

URL RIS BibTex

D. Bacciu and D. Castellana
Bayesian Mixtures of Hidden Tree Markov Models for Structured Data Clustering Neurocomputing, 342, 49-59, 2019

URL RIS BibTex

D. Bacciu, F. Errica, and A. Micheli
Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing Proceedings of the 35th International Conference on Machine Learning (ICML), 2018, ISBN 9781510867963

URL RIS BibTex

C. Gallicchio and A. Micheli
Deep Tree Echo State Networks Proceedings of the International Joint Conference on Neural Networks (IJCNN), IEEE, 2018, ISBN 9781509060146

URL RIS BibTex

C. Gallicchio, A. Micheli, and L. Silvestri
Local Lyapunov exponents of deep echo state networks Neurocomputing, 298, 34-45, 2018

URL RIS BibTex

M. Podda, D. Bacciu, A. Micheli, R. Bellù, G. Placidi, and L. Gagliardi
A machine learning approach to estimating preterm infants survival: development of the Preterm Infants Survival Assessment (PISA) predictor Scientific Reports, 8, 2018

URL RIS BibTex

C. Gallicchio and A. Micheli
Deep Echo State Network (DeepESN): A Brief Survey Technical Report, 2018

URL RIS BibTex

C. Gallicchio, A. Micheli, and L. Pedrelli
Design of deep echo state networks Neural Networks, 108, 33-47, 2018

URL RIS BibTex

D. Bacciu, A. Micheli, and A. Sperduti
Generative Kernels for Tree-Structured Data IEEE Transactions on Neural Networks and Learning Systems, 29, 4932-4946, 2018

URL RIS BibTex

C. Gallicchio, A. Micheli, and L. Pedrelli
Deep Reservoir Computing: A Critical Experimental Analysis Neurocomputing, 268, 87-99, 2017

URL RIS BibTex

C. Gallicchio, J. D. Martin-Guerrero, A. Micheli, and E. Soria-Olivas
Randomized Machine Learning Approaches: Recent Developments and Challenges Proceedings of the 25th European Symposium on Artificial Neural Networks (ESANN), 2017, ISBN 978-287587038-4

URL RIS BibTex

C. Gallicchio and A. Micheli
Echo State Property of Deep Reservoir Computing Networks Cognitive Computation, 9, 337-350, 2017

URL RIS BibTex

F. Palumbo, C. Gallicchio, R. Pucci, and A. Micheli
Human Activity Recognition using Multisensor Data Fusion based on Reservoir Computing Ambient Intelligence and Smart Environments, 8, 87-107, 2016

URL RIS BibTex

R. Barbuti, S. Chessa, A. Micheli, and R. Pucci
Localizing Tortoise Nests by Neural Networks Plos One, 11, 1-27, 2016

URL RIS BibTex

D. Bacciu, C. Gallicchio, and A. Micheli
A reservoir activation kernel for trees Proceedings of the 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2016, ISBN 978-287587027-8

URL RIS BibTex

C. Gallicchio and A. Micheli
Deep reservoir computing: A critical analysis Proceedings of the 24th European Symposium on Artificial Neural Networks (ESANN), 2016, ISBN 9782875870278

URL RIS BibTex

M. Dragone, G. Amato, D. Bacciu, S. Chessa, S. Coleman, M. D. Rocco, C. Gallicchio, C. Gennaro, H. Lozano-Peiteado, L. Maguire, M. T. Mcginnity, A. Micheli, G. M. P. O׳Hare, A. Renteria, A. Saffiotti, C. F. Vairo, and P. Vance
A cognitive robotic ecology approach to self-configuring and evolving AAL systems Engineering Applications of Artificial Intelligence, 45, 269-280, 2015

URL RIS BibTex

E. Crisostomi, C. Gallicchio, A. Micheli, M. Raugi, and M. Tucci
Prediction of the Italian electricity price for smart grid applications Neurocomputing, 170, 286-295, 2015

URL RIS BibTex

G. Amato, D. Bacciu, M. Broxvall, S. Chessa, S. Coleman, M. D. Rocco, M. Dragone, C. Gallicchio, C. Gennaro, H. Lozano-Peiteado, M. T. Mcginnity, A. Micheli, A. Ray, A. Renteria, A. Saffiotti, D. Swords, C. F. Vairo, and P. Vance
Robotic Ubiquitous Cognitive Ecology for Smart Homes Intelligent & Robotic Systems, 80, 57-81, 2015

URL RIS BibTex

D. Bacciu, P. Barsocchi, S. Chessa, C. Gallicchio, and A. Micheli
An experimental characterization of reservoir computing in ambient assisted living applications Neural Computing & Applications, 24, 1451-1464, 2014

URL RIS BibTex

D. Bacciu, A. Micheli, and A. Sperduti
Compositional Generative Mapping for Tree-Structured Data - Part II: Topographic Projection Model IEEE Transactions on Neural Networks and Learning Systems, 24, 231-247, 2013

URL RIS BibTex

C. Gallicchio and A. Micheli
Tree Echo State Networks Neurocomputing, 101, 319-337, 2013

URL RIS BibTex

D. Bacciu, A. Micheli, and A. Sperduti
Compositional Generative Mapping for Tree-Structured Data - Part I: Bottom-Up Probabilistic Modeling of Trees. IEEE Transactions on Neural Networks and Learning Systems, 23, 1987-2002, 2012

URL RIS BibTex

C. Gallicchio and A. Micheli
Architectural and Markovian factors of echo state networks Neural Networks, 24, 440-456, 2011

URL RIS BibTex

C. G. Bertinetto, C. Duce, A. Micheli, R. Solaro, and M. R. Tiné
QSPR analysis of copolymers by recursive neural networks: Prediction of the glass transition temperature of (meth)acrylic random copolymers Molecular Informatics, 29, 635-643, 2010

URL RIS BibTex

F. Masulli, A. Micheli, and A. Sperduti
Computational Intelligence and Bioengineering Frontiers in Artificial Intelligence and Applications, 196, 0-213, 2009

URL RIS BibTex

C. Bertinetto, C. Duce, A. Micheli, R. Solaro, A. Starita, and M. R. Tiné
Evaluation of hierarchical structured representations for QSPR studies of small molecules and polymers by recursive neural networks Molecular Graphics and Modelling, 27, 797-802, 2009

URL RIS BibTex

A. Micheli
Neural Network for Graphs: A Contextual Constructive Approach IEEE Transactions on Neural Networks, 20, 498-511, 2009

URL RIS BibTex

L. Bernazzani, C. Duce, A. Micheli, V. Mollica, A. Sperduti, A. Starita, and R. T. M.
Predicting Physical-Chemical Properties of Compounds from Molecular Structures by Recursive Neural Networks Chemical Information and Modeling, 46, 2030-2042, 2006

URL RIS BibTex

B. Hammer, A. Micheli, and A. Sperduti
Universal Approximation Capability of Cascade Correlation for Structures Neural Computation, 17, 1109-1159, 2005

URL RIS BibTex

B. Hammer, A. Micheli, A. Sperduti, and M. Strickert
Recursive Self-organizing Network Models Neural Networks, 17, 1061-1085, 2004

URL RIS BibTex

A. M. Bianucci, A. Micheli, A. Sperduti, and A. Starita
A Novel Approach to QSPR/QSAR Based on Neural Networks for Structures Soft Computing Approaches in Chemistry, Springer-Verlag, 2003, ISBN 3540002456

URL RIS BibTex

A. Micheli, A. Sperduti, A. Starita, and A. M. Bianucci
Analysis of the Internal Representations Developed By Neural Networks for Structures Applied to Quantitative Structure-Activity Relationship Studies of Benzodiazepines Chemical Information and Computer Sciences, 41, 202-218, 2001

URL RIS BibTex

A. M. Bianucci, A. Micheli, A. Sperduti, and A. Starita
Application of Cascade Correlation Networks for Structures to Chemistry Applied Intelligence, 12, 117-146, 2000

URL RIS BibTex

Contacts

Alessio Micheli
Tel: +39 050 2212798
Email: micheli@di.unipi.it

Address

Dipartimento di Informatica
Largo B. Pontecorvo, 3
56127 Pisa, Italy